Skip to main content
Log in

Role of chromium on plant growth and metabolism

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

The beneficial as well as toxic effects of chromium with regard to its absorption, translocation and accumulation in different parts of plants were reviewed. High concentrations of chromium exhibited severe chlorosis, necrosis and a host of other growth abnormalities and anatomical disorders. The regulation of the mineral metabolism, enzyme activity and other metabolic processes by chromium in plants was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson R.A. 1981. Nutritional role of chromium. Sci. Total Environ. 17:13–29.

    Article  CAS  PubMed  Google Scholar 

  • Andersson A., Nilsson K.O. 1973. Effekter pa tungmetalhalterna I mark och vaxt vid tillforsel av rotslam som vaxtnaringskalla och jardfarbattringsmedel Rapport (96). Avd. for vaxtnaringslara, Lantbrushogskolan, Uppasala.

  • Arnon D.I. 1937. Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen ion concentration, manganese, copper and oxygen supply, Soil Sci., 44: 91–121.

    Article  CAS  Google Scholar 

  • Austenfeld F.A. 1979. The effect of Ni,Co and Cr on net photosynthesis of primary and secondary leaves of Phaseolus vulgaris L., Photosynthetica, 13: 434–438.

    CAS  Google Scholar 

  • Baxter J.C., Aguilar M., Brown K. 1983. Heavy metals and persistent organics at a sewage sludge disposal site. J. Environ. Qual., 12: 311–314.

    Article  CAS  Google Scholar 

  • Barcelo J., Paschenrieder, Ch., Gunse B. 1985. Effect of Cr (VI) on mineral element composition of bush beans. J. Plant Nutrition, 8: 211–217.

    Article  CAS  Google Scholar 

  • Barcelo J., Paschenrieder Ch., Gunse B. 1986. Water relations of chromium treated bushbean plants (Phaseolus vulgaris L. cv. Contender) under both normal and water sterss conditions. J. Exp. Bot., 37: 178–187.

    Article  CAS  Google Scholar 

  • Bartlett R.J., Kimble J.M. 1976. Behaviour of chromium in soils: I. Trivalent forms, J. Environ. Qual., 5: 379–383.

    Article  CAS  Google Scholar 

  • Baszyński T., Krol M., Wolińska D. 1981. Photosynthetic apparatus of Lemna minor L. As affected by chromate treatment. In: Proc. 5th Intern. Congress on Photosynthesis, Photosynthesis II. Electron Transport and Photophosphorylation. ed. by Akoyunoglou, G, Balaban Intern. Sci. Services, Philadelphia, Pa, Greece, Vol. 2, pp. 111–122.

    Google Scholar 

  • Beath O.A. 1943. Toxic vegetation growing on the salt wash sandstone member of the Marrison formation. Amer. J. Bot. 30: 698–707.

    Article  CAS  Google Scholar 

  • Bertrand, D., De Wolf A. 1965. Le Chrome. Oligo-éléments doivent être utilisés comme engrais complémentaires? Academie d’Agriculture de France. Comptes Rendus des Sciences: 113–117.

  • Bertrand D., De Wolf A. 1968. Nécessité de l’oligoéléments chrom pour la culture de la pomme de terre. Comptes Rendus Hebdomadaire des Sciences de l’Academie des Sciences, ser. D, Paris, 266: 1494–1495.

    CAS  Google Scholar 

  • Bishnoi N.R., Dua A., Gupta V.K., Sawhney S.K. 1993a. Effect of chromium on seed germination, seedling growth and yield of peas. Agriculture Ecosystems and Environment, 47(1): 47–57.

    Article  CAS  Google Scholar 

  • Bishnoi N.R., Chugh L.K., Sawhney S.K. 1993b. Effect of chromium on photosynthesis, respiration and nitrogen fixation in Pea (Pisum sativum L.) seedlings. J. Plant Physiol., 142: 25–30.

    Article  CAS  Google Scholar 

  • Breckle S.W. 1989. Growth under stress heavy metals. In: The root system. ed. by Waisel Y., Katkafi U., Eshel, A., The Hidden Haff, Marcel Dekker Inc. New York.

    Google Scholar 

  • Brochiero E., Bonaly J., Mestre J.C. 1984. Toxic action of hexavalent chromium on Euglena gracilis cells strain Z grown under heterotropic conditions. Arch. Environ. Contam. Toxicol., 13: 603–608.

    Article  CAS  Google Scholar 

  • Cannon H.L. 1960. Botanical Prospecting for ore deposits, Science, 132: 591–598.

    Article  CAS  PubMed  Google Scholar 

  • Cary E.E., Allaway W.H., Olsen O.E. 1977a. Control of chromium concentrations in food plants. 1. Absorption and translocation of chromium by plants. J. Agric. Food Chem., 25: 300–304.

    Article  CAS  PubMed  Google Scholar 

  • Cary E.E., Allaway W.H., Olsen O.E. 1977b. Control of chromium concentrations in food plants. 2. Chemistry of chromium in soils and its availability to plants. J. Agric. Food. Chem., 25: 295–309.

    Google Scholar 

  • Cary E. E., Kubota J. 1990. Chromium concentration in plants: Effect of soil chromium concentration and tissue concentration by soil. J. of Agricultural and Food chemistry, January, pp 108–114.

  • Clark R.B. 1982. Plant response to mineral element toxicity and deficiency. In: Breeding plants for less favourable Environments. ed. by Christiansen M.N., Lewis, C.F., John Wiley and Sons, New York: 71–142.

    Google Scholar 

  • Corradi M.G., Bianchi A., Albasini A. 1993. Chromium toxicity in Salvia sclarea I. Effect of hexavalent chromium on seed germination and seedling development. Environ. and Exp. Bot. 33: 405–413.

    Article  CAS  Google Scholar 

  • Coughlan S. 1977. Sulfate uptake by Fucus serratus. J.Exp. Bot., 26: 1207–1215.

    Article  Google Scholar 

  • Coupin N. 1990. On the poisonous properties of compounds of sodium, potassium and ammonium. Rev. Gen Bot., 12: 177–193.

    Google Scholar 

  • Cunningham L.M., Collins F.W., Hutchinson T.C. 1975. Physiological and biochemical aspects of cadmium toxicity in soybean. I. Toxicity symptoms and autoradiographic distribution of cd in roots, stems and leaves. In: Proc. Intern. Conf. on Heavy metals in Environments, Toronto: 97–120.

  • Davis W.J. 1986. Transpiration and the water balance of plants. In: Plant physiology — a treatise. ed. by Steward F.C., Academic Press Inc., Orlando: 49–154.

    Chapter  Google Scholar 

  • Deane E.M., O’Brien R.W. 1981. Uptake of sulphate, taurine, cysteine and methionine by symbiotic and free living dinoflagellates. Arch. Microbiol., 128: 311–319.

    Article  CAS  Google Scholar 

  • De Kock P.C. 1956. Heavy metal toxicity and iron chlorosis. Ann. Bot., 20: 133–141.

    Article  Google Scholar 

  • Desmet E., Levi C., Myttenaer R.A., Verfaillie G. 1975a. The behaviour of chromium in aquatic and terrestrial food chains. EUR 5475 e Boite postale 1003, Luxemburg, pp. 43–81.

  • Desmet G., DeRuyter A., Ringoet A. 1975b. Absorption and metabolism of CrO4−2 by isolated chloroplasts. Biochemistry, 14: 1585–2588.

    Google Scholar 

  • Dobrolyubskii O.K. 1957. Micro-elements in viticulture and in agricultural viniculture. Vinodelie I vinogradarstvo, S.S.S.R., 17: 19–22.

    CAS  Google Scholar 

  • Dobrolyubskii O.K. 1958. Presowing tretments of seeds with trace elements. Priroda, 48: 95–97.

    CAS  Google Scholar 

  • Dobrolyubskii O.K., Slavvo, A.V. 1958. Application of new trace nutrients containing chromium in grape culture. Udobrenie i Urozhai, 3: 35–37.

    Google Scholar 

  • Dorn P.B., Rodgers J.H., Jop, K.M. 1987. Hexavalent chromium as a reference toxicant in effulent toxicity tests. Environ. Toxic. and Chem. 6:435–444.

    Article  CAS  Google Scholar 

  • Dubey S.K., Rai L.C. 1987. Effect of chromium and tin on survival, growth, carbon fixation, heterocyst differentiation, nitrogenase, nitrate reductase and glutamine synthetase activities of Anabaena doliolum. J. Plant physiol., 130: 165–172.

    Article  CAS  Google Scholar 

  • Epstein E. 1969. Mineral metabolism of halophytes. In: Ecological Aspects of the Mineral Nutrition of Plants. ed. by Rorison I.H., Blackwell Publ., Oxford: 345–353.

    Google Scholar 

  • Farror K. 1968. Trace elements and magnesium in basic slag and their value to plants. Agr. Digest., 15: 3–19.

    Google Scholar 

  • Fasulo M.P., Bassi M., Douini A. 1983. Cytotoxic effects of hexavalent chromium in Euglena gracilis. II. Physiological and Ultrastructural studies. Protoplasma, 114: 35–43.

    Article  CAS  Google Scholar 

  • Foroughi M., Hoffmann G., Teicher K., Venter F. 1976. The effect of incresing levels of cadmium, chromium and nickel on tomatoes in nutrient solution. Landwirtschaftliche Forschung. Sonderheft, 32: 37–48.

    CAS  Google Scholar 

  • Foy C.D., Chaney R.L., White M.C. 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol., 29: 511–566.

    Article  CAS  Google Scholar 

  • Francko D.A., Delay L., Al-hamdani S. 1993. Effect of hexavalent chromium on photosynthetic rates and petioles in Nelumba lutea seedlings. J. Aquat. Plant Manage., 31: 29–33.

    Google Scholar 

  • Gaw H.Z., Soong P.N. 1942. Nodulation and dry weight of garden peas as affected by sulfur and sulphates. J. Amer. Soc. Agron., 34: 100–103.

    Article  CAS  Google Scholar 

  • Gericke S. 1943. The effect of the trace element chromium in plant growth. Bodenkunde u. Pflanzenernahrurg, 33: 114–129.

    Article  CAS  Google Scholar 

  • Goodroad L.L., Caldwell A.C. 1979. Effects of phosphorus fertilizer and lime on As, Cr, Pb and V contents of soils and plants. J. Environ. Qual. 8, 393–396.

    Article  Google Scholar 

  • Grove J.H., Ellis B.G. 1980. Extractable Iron and Manganese as related to go soil pH and applied chromium. Soil Sci. Soc. Am. J., 44: 243–246.

    Article  CAS  Google Scholar 

  • Guillizzoni P., Adams M.S., Mac-Gaffey N. 1984. The effect of chromium on growth and photosynthesis of a submerged macrophyte, M. spicarum. In: Ecotoxicology. ed. by Rasmussen L. Proc. 3rd Okikos Conf. Ecol. Bull. (Stockholm), 36: 90–96.

  • Hara T., Sonada Y., Iwai I. 1976. Growth response of cabbage plants to transition elements under water culture conditions I. Titanium, vanadium, chromium, manganese and iron. Soil Sci. and Plant Nutr., 22: 307–315.

    Article  CAS  Google Scholar 

  • Haas A.R.C., Brusca J.N. 1961. Effects of chromium on citrus and avocado grown in nutrient solutions. Calif. Agriculture, 15 (2): 10–11.

    Google Scholar 

  • Hassan H.M.A., Mustafa H.T., Rihan T.I. 1989. Lead and chromium concentrations in the potable water of the Eastern Province of south Arabia. Bull. Environ. Contam. Toxicol., 43: 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Herbert A. 1907. The toxicity of the salt of chromium, aluminium and magnesium in comparison with similar properties of some rare metals. Bull. Soc. Chem. (France), 1: 1026–1032.

    Google Scholar 

  • Hewitt E.J. 1953. Metal inter-relationships on plant nutrition. I. Effects of some metal toxicities on sugarbeet, tomato, Oat, Potato and narrow stem kale grown on sand culture. J. Expt. Bot., 4: 59–64.

    Article  CAS  Google Scholar 

  • Hodgkiss W.S., Errington, B.J. 1941. Spectrographic identification of minor elements in hay and grain mixtures. Trans. Kentucky Acad. Sci., 9: 17–20.

    CAS  Google Scholar 

  • Hopkins I.L., Ransome-Kuti O., Majas A.S. 1968. Improvement of impaired carbohydrates metabolism by chromium (III) in malnourished infants. Am. J. Clin. Nutr., 21: 203–211.

    CAS  PubMed  Google Scholar 

  • Hunter J.G., Vergnano, O. 1952. Nickel toxicity in plants. Ann. Appl. Biol., 39: 279.

    Google Scholar 

  • Hunter J.G., Vergnano, O. 1953. Trace element toxicities in oat plants. Ann. Appl. Biol., 40: 761–777.

    Article  CAS  Google Scholar 

  • Huffman E.W.D. Jr., Allaway, W.H. 1973. Growth of plants in solution culture containing low levels of chromium. Plant Physiol., 52: 72–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara M., Hase Y., Yolomizo H., Konno S., Sato K. 1968. Nutritional disease of Satsuma mandarin trees in serpentine soil. III. Influence of excessive nickel or chromium applications on the growth and fruiting of Satsuma mandarin trees. Engei shikenjo Hokoku, Ser. A 1968 No.7: 39–54.

  • James B.R., Barlett R.J. 1983a. Behaviour of chromium in soil: V. Fate of organically complexed Cr (III) added to soil. J. Environ. Qual. 12: 169–172.

    Article  CAS  Google Scholar 

  • James B.R., Barlett R.J. 1983b. Behaviour of chromium in soil. VI. Interactions between oxidation reduction and organic complexation. J. Environ Qual. 12: 173–176.

    Article  CAS  Google Scholar 

  • James B.R., Barlett R.J. 1983c. Behaviour of chromium in soil. VII. Adsorption and reduction of hexavalent forms. J. Environ. Qual., 12: 177–181.

    Article  CAS  Google Scholar 

  • James B.R., Barlett R.J. 1984. Nitrification in soil suspension treated with chromium (III, IV) salts or tannery water. Soil Biochem. 16: 293–295.

    Article  CAS  Google Scholar 

  • Jeanjean R., Broda E. 1977. Dependence of sulfate by Anacystis nidulans on energy, on osmotic shock and on sulfate starvation. Arch. Microbiol., 144: 19–24.

    Article  Google Scholar 

  • Keiller P.A. 1939. The analysis of leaves from tea bushes affected by “Witches broom”. Tea Quart. 12: 96–97.

    CAS  Google Scholar 

  • Koenig P. 1911. The stimulatory effects of chromium compounds on plants. Chemikerzeitung, 35: 442–443.

    CAS  Google Scholar 

  • Krupa Z., Ruszkowski M., Gilowska-Jung E. 1982. The effect of chromate of the synthesis of plastid pigments and lipoquinones in Zea mays L. seedlings. Acta Soc. Bot. Pol., 51: 275–281.

    Article  CAS  Google Scholar 

  • Lahouti M., Peterson P.J. 1979. Chromium accumulation and distribution in crop plants. J. Sci. Food Agric., 30: 136–142.

    Article  CAS  Google Scholar 

  • Leroux D. 1940. Influence of same trace elements on the combustion fof organic matter and on nitrification in soil. Compt. Rend. Acad. Sci., 210: 770–772.

    CAS  Google Scholar 

  • Leroux D. 1941a. The influence of various trace elements on the fixation of atmospheric nitrogen in the course of the growth of the legume. Compt. Rend. Acad. Sci., 212: 504–507.

    CAS  Google Scholar 

  • Leroux D. 1941b. Trace elements and nitrogen content of pea seeds. Compt. rend. Acad. Agr. France, 27:807–810.

    CAS  Google Scholar 

  • Liebig G.F. Jr., Vanselow, A.P., Chapman, H.D. 1942. Effects of aluminium on copper toxicity, as revealed by solution-culture and spectrographic studies of citrus. Soil Sci., 53:341–351.

    Article  CAS  Google Scholar 

  • Lyon G.L, Brooks R.R., Peterson P.J., Bulter, G.W. 1970. Some trace elements in plants from serpentine soil. New Zealand Jour. Sci., 13: 133–139.

    CAS  Google Scholar 

  • Machold O. 1972. Lamellar proteine grune und chlorotischer chloroplasten. Biochem. Physiol. Pflanzen., 163: 30–41.

    Article  CAS  Google Scholar 

  • Mallick N., Rai L.C. 1990. Effects of heavy metals on the biology of a N2-fixing cyanobacterium Anabaena doliolum. Toxic. Assess., 5: 207–219.

    Article  CAS  Google Scholar 

  • Mertz W. 1969. Chromium occurrence and function in biological systems. Physiol. Rev., 49: 163–239.

    CAS  PubMed  Google Scholar 

  • Moral R., Pedreno J.N., Gomez I., Mataix J. 1993. Effects of chromium on the nutrient element content and morphology of tomato, J. Plant Nutr., 18: 815–822.

    Article  Google Scholar 

  • Moral R., Palacios G., Gomez I., Navaro- Pedreno J., Mataix J. 1994. Distribution and accumulation of heavy metals (Cd, Ni and Cr) in tomato plant. Fresnius Environ. Bull., 3: 395–399.

    CAS  Google Scholar 

  • Moral R., Pedreno J.N., Gomez I., Mataix J. 1995. Effects of chromium on the nutrient element content and morphology of tomato. J. Plant Nutr., 18:815–822.

    Article  CAS  Google Scholar 

  • Moral R., Gomez I., Pedreno J.N., Mataix J. 1996. Absorption of chromium and effects on micronutrient content in tomato plant (Lycopersicon esculentum M.) Agrochimica, 11(23): 138–145.

    Google Scholar 

  • Nakamuro K., Yoshikawa K, Sayato Y, Kurata H. 1978. Comparative studies of chromosomal abberration and mutagenicity of trivalent and hexavalent chromium. Mutation Res., 58: 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Otabbong E. 1989a. Chemistry of Cr in some Swedish soils. 2. Fate and impact of added Cr on pH and status of soluble Mn in four soils. Acta Agric. Scand., 39: 131–138

    Article  CAS  Google Scholar 

  • Otabbong E. 1989b. Chemistry of chromium in some Swedish soils. 3. Assessment of Cr toxicity and Cr × P interactions in Rye grass (Lolium perenne). Acta Agric. Scand., 39: 139–147.

    Article  CAS  Google Scholar 

  • Otabbong E. 1989c. Chemistry of chromium in some Swedish soils 4. Influence of CrO3 and KH2PO4 on uptake and translocation of Mn, Cu, Zn. Fe and Al by Rye grass (Lolium perenne). Acta. Agric. Scand. 39: 149–157.

    Article  CAS  Google Scholar 

  • Pfeiffer T., Simmermacher W., Rippel A. 1918. The action of chromium and Manganese on plant growth. Fiihling’s Landw. Ztg., 67: 313–323.

    CAS  Google Scholar 

  • Pratt P.F. 1966. Chromium. In: Diagnostic criteria for plants and soils. ed. by Chapman H.D., University of California, Riverside, California: 136–141.

    Google Scholar 

  • Prasad S.M., Singh J.B., Rai L.C., Kumar H.D. 1991. Metal-induced inhibition of photosynthetic electron transport chain of the cyanobacterium Nostoc muscorum. FEMS Microbiol. Lett., 82: 95–100.

    Article  CAS  Google Scholar 

  • Prince A.L. 1957. Trace element delivering capacity of ten New Jersey soil types, as measured by spectrographic analysis of soils and mature corn leaves. Soil Sci. 84:413–418.

    Article  CAS  Google Scholar 

  • Proter M.R., Francko D.A. 1991. Effect of heavy metals on short-term photosynthetic rates of Potamogeton amplifolius. J. Aquat. Plant Manage., 29: 51–53.

    Google Scholar 

  • Rai L.C., Dubey S.K. 1988. Chromium toxicity to a cyanobacterium: possible role of carbon sources in toxicity amelioration. Microbios, 55: 193–203.

    CAS  Google Scholar 

  • Ramachandran V., D’Souza T.J., Mistry, K.B. 1980. Uptake and transport of chromium in plants. J. Nucl. Agric Biol., 9: 126–128.

    CAS  Google Scholar 

  • Reinhold J., Hausrath, E. 1940. Experiments with trace-element fertilization of cucumbers. Gartenbauwiss., 15: 147–158.

    CAS  Google Scholar 

  • Reid D.A. 1971. Genetic control of reaction to aluminium in winter barley. In: Barley Genetics II. Proc. 2nd Int. Barley Genetics Symp, ed. by Nilan R.A., Washington state Univ. Press: 409–413.

  • Riedel G.F. 1985. The relationship between chromium (VI) uptake, sulfate uptake and chromium (VI) toxicity in the estuarine diatom, Thalassiosira pseudonana., Aquatic Toxicol., 7: 191–204.

    Article  CAS  Google Scholar 

  • Robinson W.O., Edgington G., Byers H.G. 1935. Chemical studies of intertile soils derived from rocks high in magnesium and generally high in chromium and nickel. USDA Tech. Bull., 471.

  • Rout G.R., Samantaray S., Das, P. 1997. Differential chromium tolerance among eight mung bean cultivars grown in nutrient culture. J. Plant Nutr., 20: 341–347.

    Article  Google Scholar 

  • Saint-Rat L. 1948. The presence of chromium in vegetables. Compt. Rend. Acad. Sci., 227:150–152.

    Google Scholar 

  • Samantaray S. 1991. Impact of chromite minewastes on the vegetation of the adjoining region of Sukinda. Ph.D. thesis, Utkal University.

  • Samantaray S., Das, P. 1991. Effect of chromite minewaste on seed germination, growth, biomass yield of Oryza sativa L. cv. Pathara. Orissa J. Agric. Res., 4:1–6.

    Google Scholar 

  • Samantaray S., Rout G.R., Das P. 1996a. Root growth of Echinochloa colona: Effects of heavy metals in solution culture. Fresnius. Envir. Bull. 5: 469–473.

    CAS  Google Scholar 

  • Samantaray S., Rout G.R., Das P. 1996b. A study of soil plant and root-shoot relationship in rice (Oryza sativa L. cv. Pathara) grown on chromiferous mine spoil. Proc. Nat. Acad. Sci. (India) 66: 349–357.

    Google Scholar 

  • Samantaray S., Das P. 1997. Accumulation and distribution of chromium, nickel and iron in the mungbean plant. Fresnius Envir. Bull., 6: 633–641.

    CAS  Google Scholar 

  • Samantaray S., Rout G.R., Das P. 1998a. Studies on the uptake of heavy metals by various plant species on chromite minespoils in sub-tropical regions of India. Environmental Monitoring and Assessment, (In Press).

  • Samantaray S., Rout, G.R., Das P. 1998b. Heavy metal uptake by plants growing on metalliferous chromite minewastes. The Science and Total Environment, (In Press).

  • Saner G. 1980. Chromium in nutrition and disease current tropics in nutrition and disease. 2, Alan. R. Liss., New York.

  • Shewry P.R., Peterson P.J. 1974. The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). J. Exp. Bot. 25: 785–797.

    Article  CAS  Google Scholar 

  • Shimp N.F., Connor, J., Prince A.L., Bear, F.E. 1957. Spectrochemical analysis of soils and biological materials. Soil Sci. 83:51–64.

    Article  CAS  Google Scholar 

  • Skeffington R.A., Shewry P.R., Peterson P.J. 1976. Chromium uptake and transport in barley seedling (Hordeum vulgare L.), Planta, 132: 209–214.

    Article  CAS  PubMed  Google Scholar 

  • Smith I.K. 1976. Characterization of sulfate transport in cultured tobacco cells. Plant Physiol., 58: 358–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soane B.D., Saunder D.H. 1959. Nickel and chromium toxicity of serpentine soils in Southern Rhodesia. Soil Sci., 88: 322–329.

    Article  CAS  Google Scholar 

  • Spence D.H.N., Millar, E.A. 1963. An experimental study of the infertility of a shetland serpentine soil. J. Ecol., 51: 333–343.

    Article  Google Scholar 

  • Stollenwerk K.G., Grove, D.B. 1985. Reduction of hexavalent chromium in water samples acidified for preservation. J. Environ. Qual. 14:396–399.

    Article  CAS  Google Scholar 

  • Swaine D.J. 1955. The trace element content of soils. Common Wealth Bur. Soil Sci. Tech. Comm., 48: 29–34.

    Google Scholar 

  • Thomson W.S., Weier T.I. 1962. The fine structure of chloroplasts from mineral deficient leaves of Phaseolus vulgaris. Amer. J. Bot., 49: 1047–1055.

    Article  CAS  Google Scholar 

  • Turner M.A., Rust R.H. 1971. Effects of chromium on growth and mineral nutrition of soybeans. Soil Science Society of American Proceedings, 35: 755–758.

    Article  CAS  Google Scholar 

  • Van Assche F., Clijsters H. 1988. Induction of enzyme capacity on plants as a result of heavy metal toxicity, dose-response relation on Phaseolus vulgaris L. treated with zinc and cadmium. Environ. Pollution, 52: 103–115.

    Article  Google Scholar 

  • Van Der Putte I., Lubbers J., Zolar Z. 1981. Effects of pH on uptake, tissue distribution and retention in hexavalent chromium in rainbow trout (Salmo gairdneri). Aquatic Toxicol., 1: 3–18.

    Article  Google Scholar 

  • Vergnano O. 1959. Metabolismo minerale di plante coltivate su terreni agrari d’ origine ofiolitica nei monti rognosi, Nuovo Giorn Bot. Italy. 66:100–150.

    Google Scholar 

  • Verkleij J.A.C., Schat, H. 1990. Mechanism of metal tolerance in higher plants. In: Heavy metal tolerance in plants: Evolutionary aspects. ed. by Shaw, A.J. CRC Press, Boca Raton, Fla.,: 179–194.

    Google Scholar 

  • Voelcker J.A. 1921. Pot culture experiments. Jour. Royal Agric. Soc., 82: 286–297.

    CAS  Google Scholar 

  • Vonscharrer K., Schorpp, W. 1935. The action of chromic and chromate ions upon cultivated plants. Z. Pflanzenernahrung. Dung. Bodenk., 37: 137–149.

    Article  Google Scholar 

  • Wallace A., Soufi S.M., Cha W., Romney E. 1976. Some effects of chromium toxicity on bush bean plants grown in soil. Plant & Soil, 44: 471–473.

    Article  CAS  Google Scholar 

  • Warrington K. 1946. Molybdenum as factor in the nutrition of lettuce. Ann. Appl. Biol., 33: 249–254.

    Article  Google Scholar 

  • Watanabe H. 1984. Accumulation of chromium from fertilizer in cultivated soils. Soil Sc. Plant Nutr. 4: 543–554.

    Article  Google Scholar 

  • Wium-Anderson S. 1974. The effect of chromium on the photosynthesis and growth of diatoms and green algae. Physiologia Plantarum, 32: 308–310.

    Article  Google Scholar 

  • Yuan T. 1955. The accumulation and distribution of scandium, chromium, iodide, cesium and thallium in the corn plant. Journ. Agric Assoc., China (Taipei), 9: 67–72.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samantaray, S., Rout, G.R. & Das, P. Role of chromium on plant growth and metabolism. Acta Physiol Plant 20, 201–212 (1998). https://doi.org/10.1007/s11738-998-0015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-998-0015-3

Key words

Navigation