Skip to main content
Erschienen in: Production Engineering 2/2017

24.03.2017 | Assembly

Cognition-enhanced assembly sequence planning for ergonomic and productive human–robot collaboration in self-optimizing assembly cells

verfasst von: Marco Faber, Alexander Mertens, Christopher M. Schlick

Erschienen in: Production Engineering | Ausgabe 2/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Self-optimizing robotized assembly systems are able to compensate the restricted operation purpose of traditional robotized automation, in order to adapt dynamically to changed production conditions. As the human operator is directly involved in the assembly process, the interaction between the human and the robot has to be designed carefully to avoid exposing the human to excessive physical and cognitive strain. For controlling a robotized assembly cell, a Cognitive Control Unit (CCU) was developed that uses the cognitive software Soar and human-like assembly strategies to achieve a transparent and understandable assembly process. To minimize the cognitive and ergonomic risks during assembly, the CCU was extended by a graph-based assembly sequence planner (GASP). The GASP is able to find the optimal assembly sequence by using a complete assembly graph of the final product as well as generic production rules for assessing the ergonomic conditions of the individual assembly steps. The presented simulation study validates the functionality of the GASP with respect to the number of workflow switches between the human and the robot, the number of switches between the robotic tools, as well as the number of assembly group switches required to collaboratively assemble a model of a Stromberg carburetor. The results show a significant reduction of all three measures. The number of parts and the type of assessment of the assembly steps have a significant impact here.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For ease of reading, the masculine form has been used in the text to refer to both genders.
 
Literatur
1.
Zurück zum Zitat Bannat A, Bautze T, Beetz M et al (2011) Artificial cognition in production systems. IEEE Trans Autom Sci Eng 8:148–174CrossRef Bannat A, Bautze T, Beetz M et al (2011) Artificial cognition in production systems. IEEE Trans Autom Sci Eng 8:148–174CrossRef
2.
Zurück zum Zitat Weidner R, Kong N, Wulfsberg JP (2013) Human hybrid robot: a new concept for supporting manual assembly tasks. Prod Eng Res Dev 7(6):675–684CrossRef Weidner R, Kong N, Wulfsberg JP (2013) Human hybrid robot: a new concept for supporting manual assembly tasks. Prod Eng Res Dev 7(6):675–684CrossRef
3.
Zurück zum Zitat Wiendahl H-P, ElMaraghy HA, Nyhuis P et al (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56(2):783–809CrossRef Wiendahl H-P, ElMaraghy HA, Nyhuis P et al (2007) Changeable manufacturing—classification, design and operation. CIRP Ann Manuf Technol 56(2):783–809CrossRef
4.
Zurück zum Zitat Gausemeier J, Frank U, Donoth J et al (2009) Specification technique for the description of self-optimizing mechatronic systems. Res Eng Des 20(4):201–223CrossRef Gausemeier J, Frank U, Donoth J et al (2009) Specification technique for the description of self-optimizing mechatronic systems. Res Eng Des 20(4):201–223CrossRef
5.
Zurück zum Zitat Schlick C, Schuh G, Klocke F et al (2017) Self-optimizing production systems. In: Brecher C, Özdemir D (eds) Integrative production technology: theory and applications. Springer International Publishing, Cham Schlick C, Schuh G, Klocke F et al (2017) Self-optimizing production systems. In: Brecher C, Özdemir D (eds) Integrative production technology: theory and applications. Springer International Publishing, Cham
6.
Zurück zum Zitat Ogorodnikova O (2009) A fuzzy theory in the risk assessment and reduction algorithms for a human centered robotics. In: The 18th IEEE international symposium on robot and human interactive communication, 2009. RO-MAN 2009. IEEE Press, pp 340–345 Ogorodnikova O (2009) A fuzzy theory in the risk assessment and reduction algorithms for a human centered robotics. In: The 18th IEEE international symposium on robot and human interactive communication, 2009. RO-MAN 2009. IEEE Press, pp 340–345
7.
Zurück zum Zitat Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann Manuf Technol 58(2):628–646CrossRef Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann Manuf Technol 58(2):628–646CrossRef
8.
Zurück zum Zitat Dombrowski U, Wagner T (2014) Mental strain as field of action in the 4th industrial revolution. Proc CIRP 17:100–105CrossRef Dombrowski U, Wagner T (2014) Mental strain as field of action in the 4th industrial revolution. Proc CIRP 17:100–105CrossRef
9.
Zurück zum Zitat Santis A de, Siciliano B, Luca A de et al (2008) An atlas of physical human–robot interaction. Mech Mach Theory 43(3):253–270CrossRefMATH Santis A de, Siciliano B, Luca A de et al (2008) An atlas of physical human–robot interaction. Mech Mach Theory 43(3):253–270CrossRefMATH
10.
Zurück zum Zitat Zaeh M, Roesel W (2009) Safety aspects in a human–robot interaction scenario: a human worker is co-operating with an industrial robot. In: Kim J-H, Ge SS, Vadakkepat P et al (eds) Progress in robotics, vol 44. Springer, Berlin, pp 53–62CrossRef Zaeh M, Roesel W (2009) Safety aspects in a human–robot interaction scenario: a human worker is co-operating with an industrial robot. In: Kim J-H, Ge SS, Vadakkepat P et al (eds) Progress in robotics, vol 44. Springer, Berlin, pp 53–62CrossRef
11.
Zurück zum Zitat Shen Y, Reinhart G (2013) Safe assembly motion—a novel approach for applying human–robot co-operation in hybrid assembly systems. In: 2013 IEEE international conference on mechatronics and automation (ICMA). IEEE, pp 7–12 Shen Y, Reinhart G (2013) Safe assembly motion—a novel approach for applying human–robot co-operation in hybrid assembly systems. In: 2013 IEEE international conference on mechatronics and automation (ICMA). IEEE, pp 7–12
12.
Zurück zum Zitat Morioka M, Sakakibara S (2010) A new cell production assembly system with human–robot cooperation. CIRP Ann Manuf Technol 59(1):9–12CrossRef Morioka M, Sakakibara S (2010) A new cell production assembly system with human–robot cooperation. CIRP Ann Manuf Technol 59(1):9–12CrossRef
13.
Zurück zum Zitat Putzer H, Onken R (2003) COSA—a generic cognitive system architecture based on a cognitive model of human behavior. Cognit Technol Work 5(2):140–151CrossRef Putzer H, Onken R (2003) COSA—a generic cognitive system architecture based on a cognitive model of human behavior. Cognit Technol Work 5(2):140–151CrossRef
14.
Zurück zum Zitat Brüggenwirth S, Schulte A (2012) COSA²—a cognitive system architecture with centralized ontology and specific algorithms. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC). Institute of Electrical and Electronics Engineers (IEEE) Brüggenwirth S, Schulte A (2012) COSA²—a cognitive system architecture with centralized ontology and specific algorithms. In: 2012 IEEE international conference on systems, man, and cybernetics (SMC). Institute of Electrical and Electronics Engineers (IEEE)
15.
Zurück zum Zitat Dumitrescu R, Anacker H, Gausemeier J (2013) Design framework for the integration of cognitive functions into intelligent technical systems. Prod Eng Res Dev 7(1):111–121CrossRef Dumitrescu R, Anacker H, Gausemeier J (2013) Design framework for the integration of cognitive functions into intelligent technical systems. Prod Eng Res Dev 7(1):111–121CrossRef
16.
Zurück zum Zitat Hoc J-M (2001) Towards a cognitive approach to human-machine cooperation in dynamic situations. Int J Hum Comput Stud 54(4):509–540CrossRef Hoc J-M (2001) Towards a cognitive approach to human-machine cooperation in dynamic situations. Int J Hum Comput Stud 54(4):509–540CrossRef
17.
Zurück zum Zitat Shalin VL (2005) The roles of humans and computers in distributed planning for dynamic domains. Cognit Technol Work 7(3):198–211CrossRef Shalin VL (2005) The roles of humans and computers in distributed planning for dynamic domains. Cognit Technol Work 7(3):198–211CrossRef
18.
Zurück zum Zitat Ogorodnikova O (2008) Human weaknesses and strengths in collaboration. Mech Eng 52:25–33 Ogorodnikova O (2008) Human weaknesses and strengths in collaboration. Mech Eng 52:25–33
19.
Zurück zum Zitat Kato R, Fujita M, Arai T (2010) Development of advanced cellular manufacturing system with human–robot collaboration. In: 19th international symposium in robot and human interactive communication. Institute of Electrical and Electronics Engineers (IEEE) Kato R, Fujita M, Arai T (2010) Development of advanced cellular manufacturing system with human–robot collaboration. In: 19th international symposium in robot and human interactive communication. Institute of Electrical and Electronics Engineers (IEEE)
20.
Zurück zum Zitat Arai T, Kato R, Fujita (2010) Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann Manuf Technol 59(1):5–8CrossRef Arai T, Kato R, Fujita (2010) Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann Manuf Technol 59(1):5–8CrossRef
21.
Zurück zum Zitat Mayer MP, Schlick CM (2012) Improving operator’s conformity with expectations in a cognitively automated assembly cell using human heuristics. In: Conference Proceedings of the 4th international conference on applied human factors and ergonomics (AHFE). USA Publishing, pp 1263–1272 Mayer MP, Schlick CM (2012) Improving operator’s conformity with expectations in a cognitively automated assembly cell using human heuristics. In: Conference Proceedings of the 4th international conference on applied human factors and ergonomics (AHFE). USA Publishing, pp 1263–1272
22.
Zurück zum Zitat Mayer MP, Schlick CM, Ewert D et al (2011) Automation of robotic assembly processes on the basis of an architecture of human cognition. Prod Eng Res Dev 5(4):2011CrossRef Mayer MP, Schlick CM, Ewert D et al (2011) Automation of robotic assembly processes on the basis of an architecture of human cognition. Prod Eng Res Dev 5(4):2011CrossRef
23.
Zurück zum Zitat Faber M, Petruck H, Kuz S et al (2014) Flexible and adaptive planning for human–robot interaction in self-optimizing assembly cells. In: Trzcielinski S, Karwowski W (eds) Advances in the ergonomics in manufacturing: managing the enterprise of the future. AHFE conference, pp 273–283 Faber M, Petruck H, Kuz S et al (2014) Flexible and adaptive planning for human–robot interaction in self-optimizing assembly cells. In: Trzcielinski S, Karwowski W (eds) Advances in the ergonomics in manufacturing: managing the enterprise of the future. AHFE conference, pp 273–283
24.
Zurück zum Zitat Rasmussen J (1986) Information processing and human-machine interaction. An approach to cognitive engineering. North-Holland, New York Rasmussen J (1986) Information processing and human-machine interaction. An approach to cognitive engineering. North-Holland, New York
25.
Zurück zum Zitat Laird JE (2012) The Soar cognitive architecture. MIT Press, Cambridge Laird JE (2012) The Soar cognitive architecture. MIT Press, Cambridge
26.
Zurück zum Zitat Zachary W, Johnson M, Hoffman R et al (2015) A context-based approach to robot–human interaction. Proc Manuf 3:1052–1059 Zachary W, Johnson M, Hoffman R et al (2015) A context-based approach to robot–human interaction. Proc Manuf 3:1052–1059
27.
Zurück zum Zitat Dellnitz M, Dumitrescu R, Flaßkamp K et al. (2014) The paradigm of self-optimization. In: Gausemeier J, Rammig FJ, Schäfer W (eds) Design methodology for intelligent technical systems. Springer, Berlin, pp 1–25CrossRef Dellnitz M, Dumitrescu R, Flaßkamp K et al. (2014) The paradigm of self-optimization. In: Gausemeier J, Rammig FJ, Schäfer W (eds) Design methodology for intelligent technical systems. Springer, Berlin, pp 1–25CrossRef
28.
Zurück zum Zitat Villegas NM, Tamura G, Müller HA et al. (2013) DYNAMICO: a reference model for governing control objectives and context relevance in self-adaptive software systems. In: Lemos R de, Giese H, Müller HA et al (eds) Software engineering for self-adaptive systems II, vol 7475. Springer, Berlin, pp 265–293CrossRef Villegas NM, Tamura G, Müller HA et al. (2013) DYNAMICO: a reference model for governing control objectives and context relevance in self-adaptive software systems. In: Lemos R de, Giese H, Müller HA et al (eds) Software engineering for self-adaptive systems II, vol 7475. Springer, Berlin, pp 265–293CrossRef
29.
Zurück zum Zitat Litoiu M, Woodside M, Zheng T (2005) Hierarchical model-based autonomic control of software systems. In: Proceedings of the 2005 workshop on design and evolution of autonomic application software. ACM, New York, pp 1–7CrossRef Litoiu M, Woodside M, Zheng T (2005) Hierarchical model-based autonomic control of software systems. In: Proceedings of the 2005 workshop on design and evolution of autonomic application software. ACM, New York, pp 1–7CrossRef
30.
Zurück zum Zitat Onken R, Schulte A (2010) System-ergonomic design of cognitive automation. Springer, BerlinCrossRef Onken R, Schulte A (2010) System-ergonomic design of cognitive automation. Springer, BerlinCrossRef
31.
Zurück zum Zitat Schlick CM, Faber M, Kuz S et al (2015) A symbolic approach to self-optimisation in production system analysis and control. In: Brecher C (ed) Advances in production technology. Springer International Publishing, Cham, pp 147–160 Schlick CM, Faber M, Kuz S et al (2015) A symbolic approach to self-optimisation in production system analysis and control. In: Brecher C (ed) Advances in production technology. Springer International Publishing, Cham, pp 147–160
32.
Zurück zum Zitat Brecher C, Müller S, Faber M et al (2012) Design and Implementation of a comprehensible cognitive assembly system. In: Conference Proceedings of the 4th international conference on applied human factors and ergonomics (AHFE). USA Publishing, pp 1253–1262 Brecher C, Müller S, Faber M et al (2012) Design and Implementation of a comprehensible cognitive assembly system. In: Conference Proceedings of the 4th international conference on applied human factors and ergonomics (AHFE). USA Publishing, pp 1253–1262
33.
Zurück zum Zitat Poole DL, Mackworth AK (2010) Artificial intelligence: Foundations of computational agents. Cambridge University Press, CambridgeCrossRefMATH Poole DL, Mackworth AK (2010) Artificial intelligence: Foundations of computational agents. Cambridge University Press, CambridgeCrossRefMATH
34.
Zurück zum Zitat Hoffman J (2001) The fast-forward planning system. AI Mag 22(3):57–62 Hoffman J (2001) The fast-forward planning system. AI Mag 22(3):57–62
35.
Zurück zum Zitat Hoffman J, Brafman RI (2005) Contingent planning via heuristic forward search with implicit belief states. In: Proceedings of ICAPS 2005, pp 71–80 Hoffman J, Brafman RI (2005) Contingent planning via heuristic forward search with implicit belief states. In: Proceedings of ICAPS 2005, pp 71–80
36.
Zurück zum Zitat Castellini C, Giunchiglia E, Tacchella A (2014) Improvements to SAT-based conformant planning. In: Proceedings of the sixth European conference on planning, pp 17–24 Castellini C, Giunchiglia E, Tacchella A (2014) Improvements to SAT-based conformant planning. In: Proceedings of the sixth European conference on planning, pp 17–24
37.
Zurück zum Zitat Thomas U, Wahl F (2001) A system for automatic planning, evaluation and execution of assembly sequences for industrial robots. Proc Int Conf Intell Robots Syst 3:1458–1464 Thomas U, Wahl F (2001) A system for automatic planning, evaluation and execution of assembly sequences for industrial robots. Proc Int Conf Intell Robots Syst 3:1458–1464
38.
Zurück zum Zitat Kaufman SG, Wilson RH, Jones RE et al (1996) LDRD final report: automated planning and programming of assembly of fully 3D mechanisms. Office of Scientific and Technical Information (OSTI) Kaufman SG, Wilson RH, Jones RE et al (1996) LDRD final report: automated planning and programming of assembly of fully 3D mechanisms. Office of Scientific and Technical Information (OSTI)
39.
Zurück zum Zitat Ewert D, Mayer MP, Schilberg D et al (2012) Adaptive assembly planning for a nondeterministic domain. In: Conference Proceedings of the 4th international conference on applied human factors and ergonomics (AHFE), pp 2720–2729 Ewert D, Mayer MP, Schilberg D et al (2012) Adaptive assembly planning for a nondeterministic domain. In: Conference Proceedings of the 4th international conference on applied human factors and ergonomics (AHFE), pp 2720–2729
40.
Zurück zum Zitat Gottipolu RB, Ghosh K (1997) Representation and selection of assembly sequences in computer-aided assembly process planning. Int J Prod Res 35(12):3447–3466CrossRefMATH Gottipolu RB, Ghosh K (1997) Representation and selection of assembly sequences in computer-aided assembly process planning. Int J Prod Res 35(12):3447–3466CrossRefMATH
41.
Zurück zum Zitat Chen F, Sekiyama K, Huang J et al (2011) An assembly strategy scheduling method for human and robot coordinated cell manufacturing. Int J Intell Comput Cybern 4(4):487–510MathSciNetCrossRef Chen F, Sekiyama K, Huang J et al (2011) An assembly strategy scheduling method for human and robot coordinated cell manufacturing. Int J Intell Comput Cybern 4(4):487–510MathSciNetCrossRef
42.
Zurück zum Zitat Zaeh MF, Wiesbeck M (2008) A model for adaptively generating assembly instructions using state-based graphs. In: Mitsuishi M, Ueda K, Kimura F (eds) Proceedings of the 41st CIRP conference on manufacturing systems, pp 195–198 Zaeh MF, Wiesbeck M (2008) A model for adaptively generating assembly instructions using state-based graphs. In: Mitsuishi M, Ueda K, Kimura F (eds) Proceedings of the 41st CIRP conference on manufacturing systems, pp 195–198
43.
Zurück zum Zitat Shah JA (2011) Fluid coordination of human–robot teams, Massachusetts Institute of Technology Shah JA (2011) Fluid coordination of human–robot teams, Massachusetts Institute of Technology
44.
Zurück zum Zitat Knepper RA, Layton T, Romanishin J et al (2013) IkeaBot: an autonomous multi-robot coordinated furniture assembly system. In: 2013 IEEE international conference on robotics and automation. Institute of Electrical and Electronics Engineers (IEEE) Knepper RA, Layton T, Romanishin J et al (2013) IkeaBot: an autonomous multi-robot coordinated furniture assembly system. In: 2013 IEEE international conference on robotics and automation. Institute of Electrical and Electronics Engineers (IEEE)
45.
Zurück zum Zitat Ewert D, Thelen S, Kunze R et al. (2010) A graph based hybrid approach of offline pre-planning and online re-planning for efficient assembly under realtime constraints. In: Liu H, Ding H, Xiong Z et al (eds) Intelligent robotics and applications, vol 6425. Springer, Berlin, pp 44–55CrossRef Ewert D, Thelen S, Kunze R et al. (2010) A graph based hybrid approach of offline pre-planning and online re-planning for efficient assembly under realtime constraints. In: Liu H, Ding H, Xiong Z et al (eds) Intelligent robotics and applications, vol 6425. Springer, Berlin, pp 44–55CrossRef
46.
Zurück zum Zitat CEN European Committee for Standardization (2008) EN 1005-2 + A1: safety of machinery—human physical performance—part 2: manual handling of machinery and component parts of machinery (EN 1005-2:2008) CEN European Committee for Standardization (2008) EN 1005-2 + A1: safety of machinery—human physical performance—part 2: manual handling of machinery and component parts of machinery (EN 1005-2:2008)
50.
Zurück zum Zitat Hansson G-Å, Balogh I, Ohlsson K et al (2004) Measurements of wrist and forearm positions and movements: effect of, and compensation for, goniometer crosstalk. J Electromyogr Kinesiol 14(3):355–367CrossRef Hansson G-Å, Balogh I, Ohlsson K et al (2004) Measurements of wrist and forearm positions and movements: effect of, and compensation for, goniometer crosstalk. J Electromyogr Kinesiol 14(3):355–367CrossRef
51.
Zurück zum Zitat Mayer MP, Odenthal B, Faber M et al (2012) Cognitive engineering of automated assembly processes. Hum Factors Ergon Manuf Serv Ind 24(3):348–368CrossRef Mayer MP, Odenthal B, Faber M et al (2012) Cognitive engineering of automated assembly processes. Hum Factors Ergon Manuf Serv Ind 24(3):348–368CrossRef
52.
Zurück zum Zitat Liu G, Ramakrishnan KG (2001) A*Prune: an algorithm for finding K shortest paths subject to multiple constraints. In: Proceedings of the 20th annual joint conference of the IEEE Computer and Communications Societies, 2001, vol 2, pp 743–749 Liu G, Ramakrishnan KG (2001) A*Prune: an algorithm for finding K shortest paths subject to multiple constraints. In: Proceedings of the 20th annual joint conference of the IEEE Computer and Communications Societies, 2001, vol 2, pp 743–749
53.
Zurück zum Zitat Faber M, Bützler J, Schlick CM (2015) Adaptive assembly sequence planning with respect to ergonomic work conditions. In: Lindgaard G, Moore D (eds) Proceedings of the 19th triennial congress of the IEA, Melbourne, 9–14 August 2015. International Ergonomics Association Faber M, Bützler J, Schlick CM (2015) Adaptive assembly sequence planning with respect to ergonomic work conditions. In: Lindgaard G, Moore D (eds) Proceedings of the 19th triennial congress of the IEA, Melbourne, 9–14 August 2015. International Ergonomics Association
55.
Zurück zum Zitat Terpstra TJ (1952) The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. Indag Math 14(3):327–333MathSciNetCrossRefMATH Terpstra TJ (1952) The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. Indag Math 14(3):327–333MathSciNetCrossRefMATH
56.
Zurück zum Zitat Dimopoulos C (2004) A review of evolutionary multiobjective optimization applications in the area of production research. In: IEEE congress on evolutionary computation, pp 1487–1494 Dimopoulos C (2004) A review of evolutionary multiobjective optimization applications in the area of production research. In: IEEE congress on evolutionary computation, pp 1487–1494
57.
Zurück zum Zitat Sarkar D, Modak JM (2005) Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. Chem Eng Sci 60(2):481–492CrossRef Sarkar D, Modak JM (2005) Pareto-optimal solutions for multi-objective optimization of fed-batch bioreactors using nondominated sorting genetic algorithm. Chem Eng Sci 60(2):481–492CrossRef
58.
Zurück zum Zitat Brandl C, Bonin D, Mertens A et al (2016) Digitalisierungsansätze ergonomischer Analysen und Interventionen am Beispiel der markerlosen Erfassung von Körperhaltungen bei Arbeitstätigkeiten in der Produktion. Zeitschrift für Arbeitswissenschaft 70(2):89–98CrossRef Brandl C, Bonin D, Mertens A et al (2016) Digitalisierungsansätze ergonomischer Analysen und Interventionen am Beispiel der markerlosen Erfassung von Körperhaltungen bei Arbeitstätigkeiten in der Produktion. Zeitschrift für Arbeitswissenschaft 70(2):89–98CrossRef
59.
Zurück zum Zitat Diego-Mas JA, Alcaide-Marzal J (2014) Using Kinect™ sensor in observational methods for assessing postures at work. Appl Ergon 45(4):976–985CrossRef Diego-Mas JA, Alcaide-Marzal J (2014) Using Kinect™ sensor in observational methods for assessing postures at work. Appl Ergon 45(4):976–985CrossRef
Metadaten
Titel
Cognition-enhanced assembly sequence planning for ergonomic and productive human–robot collaboration in self-optimizing assembly cells
verfasst von
Marco Faber
Alexander Mertens
Christopher M. Schlick
Publikationsdatum
24.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 2/2017
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-017-0732-9

Weitere Artikel der Ausgabe 2/2017

Production Engineering 2/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.