Skip to main content
Log in

Three-dimensional noisy image restoration using filtered extrapolation and deconvolution

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The problem of restoration in fluorescence microscopy has to deal at the same time with blurring and photon noise. Their combined effects corrupt the image by inserting elements that do not belong to the real object and distort the contrast. This hinders the possibility of using the images for visualization, recognition, and analysis using the three-dimensional data. The algorithms developed to restore the lost frequencies and perform band extrapolation, in general, assume absence of noise or an additive noise. This paper presents a restoration approach through band extrapolation and deconvolution that deals with the noise. An extrapolation algorithm using constraints on both spatial and frequency domains with a smoothing operator were combined with the Richardson-Lucy iterative algorithm. The results of the method for simulated data are compared with those obtained by the original Richardson-Lucy algorithm and also regularized by Total Variation. The extrapolation of frequencies is also analyzed both in synthetic and in real images. The method improved the results with higher signal-to-noise ratio and quality index values, performing band extrapolation, and achieving a better visualization of the 3D structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews H.C., Hunt B.R.: Digital Image Restoration, 2nd edn. Prentice-Hall, Englewood (1977)

    Google Scholar 

  2. Bhattarcharjee S., Sundareshan M.: Mathematical extrapolation of image spectrum for constraint-set design and set-theoretic superresolution. J. Opt. Soc. Am. A 20(8), 1516–1527 (2003)

    Article  Google Scholar 

  3. Bonettini, S., Zanella, R., L., Zanni, L.: A scaled gradient projection method for constrained image deblurring. Inverse Problems 25, 015,002 (2009)

  4. Colicchio B., Haeberle O., Xu C., Dieterlen A., Jung G.: Improvement of the LLS and MAP deconvolution algorithms by automatic determination of optimal regularization parameters and pre-filtering of original data. Opt. Commun. 224, 37–49 (2005)

    Article  Google Scholar 

  5. Conchello J.A.: Superresolution and convergence properties of the expectation-maximization algorithm for maximum-likelihood deconvolution of incoherent images. J. Opt. Soc. Am. A 15(10), 2609–2619 (1998)

    Article  Google Scholar 

  6. Danuser G.: Super-resolution microscopy using normal flow decoding and geometric constraints. J. Microscopy 204(2), 136–149 (2001)

    Article  MathSciNet  Google Scholar 

  7. Denney T. Jr, Reeves S.: Bayesian image reconstruction from fourier-domain samples using prior edge information. J. Electron. Imaging 14(4), 043,009 (2005)

    Article  Google Scholar 

  8. Dey N., Blanc-Feraud L., Zimmer C., Roux P., Kam Z., Olivo-Marin J.C., Zerubia J.: Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution. Microsc. Res. Tech. 69(4), 260–266 (2006)

    Article  Google Scholar 

  9. Ferreira P.: Interpolation and the discrete Papoulis-Gerchberg algorithm. IEEE Trans. Signal Process. 42(10), 2596–2606 (1994)

    Article  Google Scholar 

  10. Figueiredo M., Bioucas-Dias J.: Restoration of poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19, 3133–3145 (2010)

    Article  MathSciNet  Google Scholar 

  11. Foi, A., Bilcu, R., Katkovnik, V., Egiazarian, K.: Adaptive-size block transforms for signal-dependent noise removal. In: Proc. 7th Nordic Signal Processing Symposium (NORSIG’2006). Reykjavik, Iceland (2006)

  12. Foi A., Katkovnik V., Egiazarian K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gerchberg R.: Super-resolution through error energy reduction. Opt. Acta 21, 709–720 (1974)

    Article  Google Scholar 

  14. Gibson F., Lanni F.: Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. J. Opt. Soc. Am. A 8(11), 1601–1613 (1991)

    Article  Google Scholar 

  15. Goodman J.: Introduction to Fourier Optics, 2nd edn. McGraw Hill, New York (1996)

    Google Scholar 

  16. Homem M., Mascarenhas N., Costa L., Preza C.: Biological image restoration in optical-sectioning microscopy using prototype image constraints. Real Time Imaging 8, 475–490 (2002)

    Article  MATH  Google Scholar 

  17. Homem, M.R.P.: Reconstrução tridimensional de imagens com o uso de deconvolução a partir de seções bidimensionais obtidas em microscopia óptica (in portuguese). Doutorado em Física Computacional, Universidade de São Paulo - Instituto de Física de São Carlos (2003)

  18. Hunt B.: Super-resolution of images: algorithms, principles, performance. Int. J. Imaging Syst. Technol. 6, 297–304 (1995)

    Article  Google Scholar 

  19. van Kempen G., van Vliet L., Verveer P.: Application of image restoration methods for confocal fluorescence microscopy. In: Cogswell, C., Conchello, J.A., Wilson, T. (eds) 3-D Microscopy: Image Acquisition and Processing IV, vol. 2984, pp. 114–124. SPIE, Washington (1997)

    Google Scholar 

  20. Kenig T., Kam Z., Feuer A.: Blind image deconvolution using machine learning for three-dimensional microscopy. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2191–2204 (2010) (in press)

    Article  Google Scholar 

  21. Lippincott-Schwartz J., Patterson G.: Development and use of fluorescent protein markers in living cells. Science 300(5616), 87–91 (2003)

    Article  Google Scholar 

  22. Lucy L.: An iterative technique for the rectification of observed distributions. Astron. J. 79(6), 745–765 (1974)

    Article  Google Scholar 

  23. Malgouyres F., Guichard F.: Edge direction preseving image zooming: a mathematical and numerical analysis. SIAM J. Numer. Anal. 39(1), 1–37 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papoulis A.: A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circuit. Syst. 22(9), 735–742 (1975)

    Article  MathSciNet  Google Scholar 

  25. Philip J.: Optical transfer function in 3d for a large numerical aperture. J. Mod. Opt. 46(6), 1031–1042 (1999)

    Google Scholar 

  26. Ponti-Jr., M.P., Mascarenhas, N.: Does background intensity estimation influence the restoration of microscopy images? In: IEEE Proceedings 23rd SIBGRAPI—Conference on Graphics, Patterns and Images. IEEE (2010)

  27. Ponti-Jr., M.P., Mascarenhas, N., Suazo, C.: A restoration and extrapolation iterative method for band-limited fluorescence microscopy images. In: IEEE Proceedings XX Brazilian Symposium on Computer Graphics and Image Processing, pp. 271–280. IEEE (2007)

  28. Restrepo A., Chacon L.: A smoothing property of the median filter. IEEE Trans. Signal Process. 42(6), 1553–1555 (1994)

    Article  Google Scholar 

  29. Richardson W.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59 (1972)

    Article  Google Scholar 

  30. Sarder P., Nehorai A.: Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23(3), 32–45 (2006)

    Article  Google Scholar 

  31. Sawicki, J.: Median algorithms—characterized in frequency domain. In: Proceedings of IEEE International Symposium Intelligent Signal Processing, pp. 203–207 (2003)

  32. Sementilli P., Hunt B., Nadar M.: Analysis of the limit to super-resolution in incoherent imaging. J. Opt. Soc. Am. A 10, 2265–2276 (1993)

    Article  Google Scholar 

  33. Sheppard C., Gu M., Kawata Y., Kawata S.: Three-dimensional transfer functions for high-aperture systems. J. Opt. Soc. Am. A 11(2), 593–598 (1994)

    Article  Google Scholar 

  34. Snyder D., Miller M.: Random Point Processes in Time and Space. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  35. Song L., Hennink E., Young I., Tanke H.: Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995)

    Article  Google Scholar 

  36. Wang Z., Bovik A.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moacir P. Ponti-Jr.

Additional information

This study was partially supported by CAPES with a PhD/PDEE scolarship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponti-Jr, M.P., Mascarenhas, N.D.A., Ferreira, P.J.S.G. et al. Three-dimensional noisy image restoration using filtered extrapolation and deconvolution. SIViP 7, 1–10 (2013). https://doi.org/10.1007/s11760-011-0216-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0216-x

Keywords

Navigation