Skip to main content
Log in

Dynamical analysis of fractional order Uçar prototype delayed system

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Chaotic dynamics of the fractional order Uçar system involving time delay is studied. Modified Adams–Bashforth–Moulton method is used for numerical simulations. Effect of fractional order and delay on chaotic behavior of the system is studied. The two-scroll attractor is observed in the system for the range of fractional order 0.5 < α ≤ 1. For the range 0.2 ≤ α ≤ 0.5, same system shows one-scroll attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fridman E., Fridman L., Shustin E.: Steady modes in relay control systems with time delay and periodic disturbances. J. Dyn. Syst. Meas. Control 122, 732–737 (2000)

    Article  Google Scholar 

  2. Davis L.C.: Modification of the optimal velocity traffic model to include delay due to driver reaction time. Phys. A 319, 557–567 (2002)

    Google Scholar 

  3. Kuang Y.: Delay Differential Equations with Applications in Population Biology. Academic Press, Boston (1993)

    Google Scholar 

  4. Epstein I., Luo Y.: Differential delay equations in chemical kinetics. Nonlinear models: the cross-shaped phase diagram and the Oregonator. J. Chem. Phys. 95, 244–254 (1991)

    Article  Google Scholar 

  5. Asea P., Zak P.: Time-to-build and cycles. J. Econ. Dyn. Control. 23, 1155–1175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Cesare L., Sportelli M.: A dynamic IS–LM model with delayed taxation revenues. Chaos Solitons Fractals 25, 233–244 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fanti L., Manfredi P.: Chaotic business cycles and fiscal policy: an IS–LM model with distributed tax collection lags. Chaos Solitons Fractals 32, 736–744 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Uçar A.: A prototype model for chaos studies. Int. J. Eng. Sci. 40, 251–258 (2002)

    Article  MATH  Google Scholar 

  9. Uçar A.: On the chaotic behaviour of a prototype delayed dynamical system. Chaos Solitons Fractals 16, 187–194 (2003)

    Article  MATH  Google Scholar 

  10. Strogatz S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Addison-Wesley, Massachusetts (1994)

    Google Scholar 

  11. Kan M., Taguchi H.: Ship capsizing and chaos. In: Thompson, J.M.T., Bishop, S.R (eds) Nonlinearity and Chaos in Engineering Dynamics, pp. 418–420. Wiley, Chichester (1994)

    Google Scholar 

  12. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  13. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  14. Debnath L.: Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci 2003(54), 3413–3442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gorenflo R., Vivoli A., Mainardi F.: Discrete and continuous random walk models for space-time fractional diffusion. Nonlinear Dyn. 38, 101–116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gorenflo R., Mainardi F., Moretti D., Paradisi P.: Time-fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29, 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Daftardar-Gejji V., Bhalekar S.: Solving multi-term linear and non-linear diffusion-wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 202, 113–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petras I.: Chaos in the fractional-order Voltas system: modeling and simulation. Nonlinear Dyn. 57, 157–170 (2009)

    Article  MATH  Google Scholar 

  19. Wu X., Wang H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61, 407–417 (2010)

    Article  MATH  Google Scholar 

  20. Chang C.M., Chen H.K.: Chaos and hybrid projective synchronization of commensurate and incommensurate fractional order ChenLee systems. Nonlinear Dyn. 62, 851–858 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li S., Ge Z.: Pragmatical adaptive synchronization of different orders chaotic systems with all uncertain parameters via nonlinear control. Nonlinear Dyn. 64, 77–87 (2011)

    Article  MathSciNet  Google Scholar 

  22. Daftardar-Gejji V., Bhalekar S.: Chaos in fractional ordered Liu system. Comput. Math. Appl. 59, 1117–1127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bhalekar S., Daftardar-Gejji V.: Fractional ordered Liu system with delay. Commun. Nonlinear Sci. Num. Simul. 15, 2178–2191 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bhalekar S., Daftardar-Gejji V.: Synchronization of different fractional order chaotic systems using active control. Commun. Nonlin. Sci. Num. Simul. 15, 3536–3546 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Podlubny I., Petras I., Vinagre B.M., O’Leary P., Dorcak L.: Analogue realization of fractional-order controllers. Nonlinear Dyn. 29(14), 281–296 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Monje C., Calderon A., Vinagre B.M., Chen Y.Q., Feliu V.: On fractional PIλ controllers: some tuning rules for robustness to plant uncertainties. Nonlinear Dyn. 38, 369–381 (2004)

    Article  MATH  Google Scholar 

  27. Celik V., Demir Y.: Effects on the chaotic system of fractional order PIα controller. Nonlinear Dyn. 59, 143–159 (2010)

    Article  MATH  Google Scholar 

  28. Sheu L.J.: A speech encryption using fractional chaotic systems. Nonlinear Dyn. 65, 103–108 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tenreiro Machado J., Duarte, F.: Analysis of financial data series using fractional Fourier transform and multidimensional scaling. Nonlinear Dyn. doi:10.1007/s11071-010-9885-1

  30. Vilela Mendes R.: A fractional calculus interpretation of the fractional volatility model. Nonlinear Dyn. 55(4), 395–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chen W.C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36, 1305–1314 (2008)

    Article  Google Scholar 

  32. Hale J.K., Lunel S.M.V.: Introduction to Functional Differential Equations, Applied Mathematical Sciences, vol. 99. Springer, Berlin (1993)

    Google Scholar 

  33. Bhalekar S., Daftardar-Gejji V.: A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calculus Appl. 1(5), 1–8 (2011)

    MathSciNet  Google Scholar 

  34. Diethelm K., Ford N.J., Freed A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. Diethelm K.: An algorithm for the numerical solution of differential equations of fractional order. Electron. Trans. Numer. Anal. 5, 1–6 (1997)

    MathSciNet  MATH  Google Scholar 

  36. Luchko Y., Gorenflo R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math Vietnamica 24, 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Bhalekar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhalekar, S. Dynamical analysis of fractional order Uçar prototype delayed system. SIViP 6, 513–519 (2012). https://doi.org/10.1007/s11760-012-0330-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0330-4

Keywords

Navigation