Skip to main content

Advertisement

Log in

Emotion classification during music listening from forehead biosignals

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Emotion recognition systems are helpful in human–machine interactions and clinical applications. This paper investigates the feasibility of using 3-channel forehead biosignals (left temporalis, frontalis, and right temporalis channel) as informative channels for emotion recognition during music listening. Classification of four emotional states (positive valence/low arousal, positive valence/high arousal, negative valence/high arousal, and negative valence/low arousal) in arousal–valence space was performed by employing two parallel cascade-forward neural networks as arousal and valence classifiers. The inputs of the classifiers were obtained by applying a fuzzy rough model feature evaluation criterion and sequential forward floating selection algorithm. An averaged classification accuracy of 87.05 % was achieved, corresponding to average valence classification accuracy of 93.66 % and average arousal classification accuracy of 93.29 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Juslin, P.N., Västfjäll, D.: Emotional response to music: the need to consider underlying mechanisms. Behav. Brain. Sci. 31, 559–575 (2008)

    Article  Google Scholar 

  2. Erkkilä, J., Gold, C., Fachner, J., Ala-Ruona, E., Punkanen, M., Vanhala, M.: The effect of improvisational music therapy on the treatment of depression: protocol for a randomised controlled trial. BMC Psychiatry 8(50), (2008). doi:10.1186/1471-244X-8-50

  3. Morgan, K.A., Harris, A.W., Luscombe, G., Tran, Y., Herkes, G., Bartop, R.W.: The effect of music on brain wave functioning during an acute psychotic episode: a pilot study. Psychiatry Res. 178(2), 446–448 (2010)

    Article  Google Scholar 

  4. Saiwaki, N., Kato, K., Inokuchi, S.: An approach to analysis of EEGs recorded during music listening. J. New. Music. Res. 26(3), 227–243 (1997)

    Article  Google Scholar 

  5. Sokhadze, E.M.: Effects of music on the recovery of autonomic and electrocortical activity after stress induced by aversive visual stimuli. Appl. Psychophysiol. Biofeedback 31(1), 31–50 (2007)

    Article  Google Scholar 

  6. Flores-Gutiérrez, E.O., Díaz, J.L., Barrios, F.A., Favila-Humara, R., Guevara, M.A., del Río-Portilla, Y., Corsi-Cabrea, M.: Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int. J. Psychophysiol. 65(1), 69–84 (2007)

    Article  Google Scholar 

  7. Field, T., Martinez, A., Nawrocki, T., Pickens, J., Fox, N.A., Schanberg, S.: Music shifts frontal EEG in depressed adolescents. Adolescence 33(129), 109–116 (1998)

    Google Scholar 

  8. Bhattacharya, J., Petsche, H.: Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Process. 85(11), 2161–2177 (2005)

    Article  MATH  Google Scholar 

  9. Sammler, D., Grigutsch, M., Fritz, T., Koelsch, S.: Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2), 293–304 (2007)

    Article  Google Scholar 

  10. Pavlygina, R.A., Sakharov, D.S., Davydov, V.I.: Spectral analysis of the human EEG during listening to musical compositions. Hum. Physiol. 30(1), 54–60 (2004)

    Article  Google Scholar 

  11. Blood, A.J., Zatorre, R.J., Bermudez, P., Evans, A.C.: Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat. Neurosci. 2(4), 382–387 (1999)

    Article  Google Scholar 

  12. Koelsch, S., Fitz, T., Cramon, D.Y.V., Müller, K., Friederici, A.D.: Investigating emotion with music: and fMRI study. Hum. Brain. Mapp. 27(3), 239–250 (2006)

    Article  Google Scholar 

  13. Schmidt, L.A., Trainor, L.J.: Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn. Emot. 15, 487–500 (2001)

    Article  Google Scholar 

  14. Trainor, L.J., Schmidt, L.A.: Processing emotions induced by music. In: Peretz, I., Zatorre, R. (eds.) The Cognitive Neuroscience of Music, pp. 310–324. Oxford University Press, Oxford (2003)

    Chapter  Google Scholar 

  15. Chung, J.W., Vercoe, G.S.: The affective remixer: personalized music arranging. In: Proc. Conference on Human Factors in Computing Systems, pp. 393–398. Montréal, Canada (2006)

  16. Knight, W.E.J., Rickard, N.S.: Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J. Music Ther. 38(4), 254–272 (2001)

    Article  Google Scholar 

  17. Bernardi, L., Porta, C., Sleight, P.: Cardiovascular, cerebrovascular, and respiratory changes induced by different types of music in musicians and non-musicians: the importance of silence. Heart 92(4), 445–452 (2006)

    Article  Google Scholar 

  18. Witvliet, C.V.O., Varna, S.R.: Play it again Sam: repeated exposure to emotionally evocative music polarises liking and smiling responses, and influences other affective reports, facial EMG, and heart rate. Cogn. Emot. 21(3), 3–25 (2007)

    Article  Google Scholar 

  19. McFarland, R.A.: Relationship of skin temperature changes to the emotions accompanying music. Biofeedback Self Regul. 10(3), 255–267 (1985)

    Article  MathSciNet  Google Scholar 

  20. Janssen, J.H., van den Broek,E.L., Westerink, J.H.D.M.: Personalized affective music player. In: Proc. IEEE 3rd International Conference on Affective Computing and Intelligent Interaction, pp. 1–6. Eindhoven, Netherlands (2009)

  21. Kim, J., André, E.: Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2067–2083 (2008)

    Article  Google Scholar 

  22. Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

    Google Scholar 

  23. Firoozabadi, S.M.P., Oskoei, M.R.A., Hu, H.: A human-computer interface based on forehead multi-channel bio-signals to control a virtual wheelchair. In: Proc. 14th Iranian Conference on Biomedical Engineering, pp. 108–113. Tehran, Iran (2008)

  24. Rezazadeh, I.M., Wang, X., Firoozabadi, M., Golpayegani, M.R.H.: Using affective human–machine interface to increase the operation performance in virtual construction crane training system: a novel approach. Autom. Constr. 20(3), 289–298 (2011)

    Article  Google Scholar 

  25. Rad, R.H., Firoozabadi, M., Rezazadeh, I.M.: Discriminating affective states in music induction environment using forehead bioelectric signals. In: Proc. 1st Middle East Conference on Biomedical Engineering, pp. 343–346. Sharjah (2011)

  26. Silvia, P.J., Warburton, J.B.: Positive and negative affect: bridging states and traits. In: Hersen, M., Thomas, J.C. (eds.) Comprehensive Handbook of Personality and Psychopathology, vol. 1, pp. 268–269. Wiley, New Jersey (2006)

    Google Scholar 

  27. Russel, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  28. D’Alessandro, M., Esteller, R., Vachtsevanos, G., Hinson, A., Echauz, J., Litt, B.: Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans. Biomed. Eng. 50(5), 603–615 (2003)

    Article  Google Scholar 

  29. Pop-Jordanova, N., Pop-Jordanova, J.: Spectrum-weighted EEG frequency (“brain-rate”) as a quantitative indicator of mental arousal. Prilozi 26(2), 35–42 (2005)

    Google Scholar 

  30. Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. 14(2), 186–197 (2010)

    Article  Google Scholar 

  31. Hu, Q., Xie, Z., Yu, D.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40(12), 3509–3521 (2007)

    Article  MATH  Google Scholar 

  32. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn, pp. 235–236. Academic Press, San Diego, CA (2006)

    MATH  Google Scholar 

  33. Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network \(\text{ Toolbox }^{\rm TM}\) User’s Guide. The MathWorks Inc, Natick, MA (2011)

    Google Scholar 

  34. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based human emotion recognition and visualization. In: Proc. International Conference on Cyberworlds, pp. 262–269. Singapore (2010)

  35. Khosrowabadi, R., Heijnen, M., Wahab, A., Quek, H.C.: The dynamic emotion recognition system based on functional connectivity of brain regions. In: Proc. IEEE Intelligent Vehicles Symposium, pp. 377–381. San Diego, CA (2010).

Download references

Acknowledgments

We gratefully acknowledge the assistance of Ms Atena Bajoulvand for her help with collection of the data of female subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Naji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naji, M., Firoozabadi, M. & Azadfallah, P. Emotion classification during music listening from forehead biosignals. SIViP 9, 1365–1375 (2015). https://doi.org/10.1007/s11760-013-0591-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0591-6

Keywords

Navigation