Skip to main content
Log in

Influence of Golmud-Lhasa section of Qinghai-Tibet Railway on blown sand transport

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The Qinghai-Tibet Railway (QTR) passes through 281 km of sandy land, 11.07 km of which causes serious sand damage to the railway and thus, the control of blown sand is important for the safe operation of the railway. Construction of the railway and sand prevention system greatly changed the blown sand transport of the primary surface. Effective and feasible sand-control measures include stone checkerboard barriers (SCBs), sand fences (SFs), and gravel coverings. This study simulated the embankments, SCBs and SFs of the QTR in a wind tunnel, and analyzed their respective wind profile, sand deposition, and sand-blocking rate (SBR) in conjunction with field data, aiming at studying the influence of Golmud-Lhasa section of the QTR and sand prevention system on blown sand transport. The results of wind tunnel experiments showed that wind speed increased by 67.7%–77.3% at the upwind shoulder of the embankment and decreased by 50.0%–83.3% at upwind foot of embankment. Wind speed decreased by 50.0%–100.0% after passing through the first SF, and 72.2%–100.0% after the first row of stones within the first SCB grid. In the experiment of sand deposition, the higher the wind speed, the lower the SBR of SCB and SF. From field investigation, the amount of sand blocked by the four SFs decreased exponentially and its SBR was about 50.0%. By contrast, SCB could only block lower amounts of sand, but had a higher SBR (96.7%) than SF. Although, results show that SFs and SCBs along the Golmud-Lhasa section of the QTR provide an obvious sand blocking effect, they lead to the deposition of a large amount of sand, which forms artificial dunes and becomes a new source of sand damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alghamdi A A A, Al-Kahtani N S, 2005. Sand control measures and sand drift fences. Journal of Performance of Constructed Facilities, 19(4): 295–299. doi: 10.1061/(ASCE)0887-3828(2005)19:4(295)

    Article  Google Scholar 

  • Bai Huzhi, Li Dongliang, Dong Anxiang, 2005. Strong wind and wind pressure along the Qinghai-Tibet Railway. Journal of Glaciology and Geocryology, 27(1): 111–116. (in Chinese)

    Google Scholar 

  • Bai Yang, Wang Naiáng, Liao Kongtai et al., 2011. Geomorphological evolution revealed by aeolian sedimentary structure in Badain Jaran Desert on Alxa Plateau, Northwest China. Chinese Geographical Science, 21(3): 178–187. doi: 10.1007/s11769-011-0468-y

    Article  Google Scholar 

  • Chang Zhaofeng, Zhong Shengnian, Han Fugui et al., 2000. Research of the suitable row spacing on clay barriers and straw barriers. Journal of Desert Research, 20(4): 455–457. (in Chinese)

    Google Scholar 

  • Chen Hui, Li Shuangcheng, Zhang Yili, 2003. Impact of road construction on vegetation alongside Qinghai-Xizang highway and railway. Chinese Geographical Science, 13(4): 340–346. doi: 10.1007/s11769-003-0040-5

    Article  Google Scholar 

  • Cheng G D, Sun Z Z, Niu F J, 2008. Application of the roadbed cooling approach in Qinghai-Tibet railway engineering. Cold Regions Science and Technology, 53(3): 241–258. doi: 10.1016/j.coldregions.2007.02.00

    Article  Google Scholar 

  • Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112(F2): 1–10. doi: 10.1029/2006JF000631

    Article  Google Scholar 

  • Dong Z B, Chen G T, He X D et al., 2004. Controlling blown sand along the highway crossing the Taklimakan Desert. Journal of Arid Environments, 57(3): 329–344. doi: 10.1016/j.jaridenv.2002.02.001

    Article  Google Scholar 

  • Han Q J, Qu J J, Dong Z B et al., 2013. The effect of air density on sand transport structures and the adobe abrasion profile: A field wind-tunnel experiment over a wide range of altitude. Boundary-layer Meteorology, 150(2): 299–317. doi: 10.1007/s10546-013-9874-2

    Article  Google Scholar 

  • Han Zhiwen, Wang Tao, Dong Zhibao et al., 2004. Main engineering measurements and mechanism of blown sand hazard control. Progress in Geography, 23(1): 13–21. (in Chinese)

    Google Scholar 

  • Jin H J, Wei Z, Wang S L et al., 2008. Assessment of frozen-ground conditions for engineering geology along the Qinghai-Tibet highway and railway, China. Engineering Geology, 101(3–4): 96–109. doi: 10.1016/j.enggeo.2008.04.001

    Article  Google Scholar 

  • Lei J Q, Li S Y, Fan D D et al., 2008. Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway. Chinese Science Bulletin, 53(2): 1–7. doi: 10.1007/s11434-008-6023-2

    Article  Google Scholar 

  • Liu Z M, Zhao W Z, 2001. Shifting sand control in central Tibet. Ambio, 30(6): 376–380

    Google Scholar 

  • Livingstone I, Wiggs G F S, Weaver C M, 2007. Geomorphology of desert sand dunes: A review of recent progress. Earth Science Reviews, 80(3–4): 239–257. doi: 10.1016/j.earscirev.2006.09.004

    Article  Google Scholar 

  • Ma W, Cheng G D, Wu Q B, 2009. Construction on permafrost foundations: Lessons learned from the Qinghai-Tibet railroad. Cold Regions Science and Technology, 59(1): 3–11. doi: 10.1016/j.coldregions.2009.07.007

    Article  Google Scholar 

  • Mitchell D J, Fullen M A, Trueman I C et al., 1998. Sustainability of reclaimed desertified land in Ningxia, China. Journal of Arid Land, 39(2): 239–251. doi: 10.1006/jare.1998.0396

    Article  Google Scholar 

  • Qiu G Y, Lee I B, Shimizu H et al., 2004. Principles of sand dune fixation with straw checkerboard technology and its effects on the environment. Journal of Arid Environments, 56(3): 449–464. doi: 10.1016/S0140-1963(03)00066-1

    Article  Google Scholar 

  • Qu Jianjun, Lin Yuquan, Liu Xianwan et al., 2002. The effects of an A-typed nylon fence on Aeolian sand prevention. Journal of Lanzhou University (Natural Sciences), 38(2): 171–176. (in Chinese)

    Google Scholar 

  • Sørensen M, 2004. On the rate of aeolian sand transport. Geomorphology, 59(1–4): 53–62. doi: 10.1016/j.geomorph.2003.09.005

    Article  Google Scholar 

  • Wu Q B, Lu Z J, Zhang T J et al., 2008. Analysis of cooling effect of crushed rock-based embankment of the Qinghai-Xizang Railway. Cold Regions Science and Technology, 53(3): 271–282. doi: 10.1016/j.coldregions.2007.10.004

    Article  Google Scholar 

  • Wu Q B, Shi B, Fang H Y, 2003. Engineering geological characteristics and processes of permafrost along the Qinghai-Xizang Highway. Engineering Geology, 68(3–4): 387–396. doi: 10.1016/S0013-7952(02)00242-9

    Article  Google Scholar 

  • Wu Q B, Zhang T J, 2010. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research, 115(D9): D09107. doi: 10.1029/2009JD012974

    Article  Google Scholar 

  • Xie S B, Qu J J, Zu R P et al., 2012. New discoveries on the effects of desertification on the ground temperature of permafrost and its significance to the Qinghai-Tibet Plateau. Chinese Science Bulletin, 57(8): 838–842. doi: 10.1007/s11434-011-4901-5

    Article  Google Scholar 

  • Xu X L, Zhang K L, Kong Y P et al., 2006. Effectiveness of erosion control measures along the Qinghai-Tibet highway, Tibetan Plateau, China. Transportation Research Part D: Transport and Environment, 11(4): 302–309. doi: 10.1016/j.trd.2006.06.001

    Article  Google Scholar 

  • Yang M X, Wang S L, Yao T D, 2004. Desertification and its relationship with permafrost along the Qinghai-Tibet Plateau. Cold Regions Science and Technology, 39(1): 47–53. doi: 10.1016/j.coldregions.2004.01.002

    Article  Google Scholar 

  • Ying Daiying, Qu Jianjun, Han Qingjie et al., 2013. Wind-blown sand activity intensity in Cuonahu Lake section of Qinghai-Tibet Railway. Journal of Desert Research, 33(1): 9–15. (in Chinese)

    Google Scholar 

  • Zhang C L, Zou X Y, Pan X H et al., 2007. Near-surface airflow field and aerodynamic characteristics of the railway-protection system in the Shapotou region and their significance. Journal of Arid Environments, 71(2): 169–187. doi: 10.1016/j.jaridenv.2007.03.006

    Article  Google Scholar 

  • Zhang K C, Qu J J, Han Q J et al., 2012. Wind energy environments and aeolian sand characteristics along the Qinghai-Tibet Railway, China. Sedimentary Geology, 273–274: 91–96. doi: 10.1016/j.sedgeo.2012.07.003

    Article  Google Scholar 

  • Zhang K C, Qu J J, Liao K T et al., 2010. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China. Aeolian Research, 1(3–4): 143–146. doi: 10.1016/j.aeolia.2009.10.001

    Article  Google Scholar 

  • Zhang Kecun, Qu Jianjun, Niu Qinghe et al., 2011. Protective mechanism and efficiency of sand-blocking fence along Qinghai-Tibet Railway. Journal of Desert Research, 31(1): 16–20. (in Chinese)

    Google Scholar 

  • Zou X Y, Li S, Zhang C, 2002. Desertification and control plan in the Tibet Autonomous Region of China. Journal of Arid Environments, 51(2): 183–198. doi: 10.1006/jare.2001.0943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Qu.

Additional information

Foundation item: Under the auspices of National Natural Science Foundation of China (No. 40930741), National Basic Research Program of China (No. 2012CB026105)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Yao, Z. & Qu, J. Influence of Golmud-Lhasa section of Qinghai-Tibet Railway on blown sand transport. Chin. Geogr. Sci. 25, 39–50 (2015). https://doi.org/10.1007/s11769-014-0722-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-014-0722-1

Keywords

Navigation