Skip to main content
Log in

Cr(III) adsorption by sugarcane pulp residue and biochar

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A batch experiment was conducted to investigate the adsorption of trivalent chromium (Cr(III)) from aqueous solutions by sugarcane pulp residue (SPR) and biochar. The results show that Cr(III) adsorption by SPR and biochar is highly pH-dependent and Cr(III) adsorption amount increases with the increase of pH. The adsorption kinetics of Cr(III) fits well with the pseudo-second-order model. The maximum Cr(III) adsorption capacities of 15.85 mg/g and 3.43 mg/g for biochar and SPR were calculated by Langmuir model. This indicates that biochar has a larger ability for Cr(III) adsorption than SPR. The free energy change value (ΔG) reveals a spontaneous sorption process of Cr(III) onto SPR and non-spontaneous sorption process onto biochar. The entropy change (ΔS) and enthalpy change (ΔH) are found to be 66.27 J/(mol·K) and 17.13 kJ/mol for SPR and 91.59 J/(mol·K) and 30.875 kJ/mol for biochar which further reflect an affinity of Cr(III) onto SPR and biochar. It is suggested that biochar has potential to be an efficient adsorbent in the removal of Cr(III) from industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BABU B V, GUPTA S. Removal of Cr(VI) from wastewater using activated tamarind seeds as an adsorbent [J]. Journal of Environmental Engineering and Science, 2008, 7(5): 553–557.

    Article  Google Scholar 

  2. MOHANTY M, PATRA H K. Attenuation of chromium toxicity by bioremediation technology [J]. Reviews of Environmental Contamination and Toxicology, 2011, 210: 1–34.

    Article  Google Scholar 

  3. LI Jin-hua, YAO Chen-lan, LIU Yan-biao, LI Di, ZHOU Bao-xue, CAI Wei-min. The hazardous hexavalent chromium formed on trivalent chromium conversion coating: The origin, influence factors and control measures [J]. Journal of Hazardous Materials, 2012, 221/222: 56–61.

    Article  Google Scholar 

  4. SHANKER A K, CERVANTES C, LOZA-TAVERA H, AVUDAINAYAGAM S. Chromium toxicity in plants [J]. Environment International, 2005, 31(5): 739–753.

    Article  Google Scholar 

  5. SARIN V, PANT K K. Removal of chromium from industrial waste by using eucalyptus bark [J]. Bioresource Technology, 2006, 97 (1): 15–20.

    Article  Google Scholar 

  6. ZAROUAL Z, CHAAIR H, ESSADKI A H, ASS K E, AZZI M. Optimizing the removal of trivalent chromium by electrocoagulation using experimental design [J]. Chemical Engineering Journal, 2009, 148(2/3): 488–495.

    Article  Google Scholar 

  7. SAHU S K, MESHRAM P, PANDEY B D, KUMAR T R. Removal of chromium (III) by cation exchange resin, Indion 790 for tannery waste treatment [J]. Hydrometallurgy, 2009, 99(3/4): 170–174.

    Article  Google Scholar 

  8. PAGANA A E, SKLARI S D, KIKKINIDES E S, ZASPALIS V T. Combined adsorption-permeation membrane process for the removal of chromium (III) ions from contaminated water [J]. Journal of Membrane Science, 2011, 367(1/2): 319–324.

    Article  Google Scholar 

  9. ZENG Zhi-xiang, SUN Ya-ling, ZHANG Jun-yan. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid [J]. Electrochemistry Communications, 2009, 11(2): 331–334.

    Article  Google Scholar 

  10. YAO Qian, ZHANG Hua, WU Jun, SHAO Li-ming, HE Pin-jing. Biosorption of Cr (III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies [J]. Frontiers of Environmental Science & Engineering, 2010, 4(3): 286–294.

    Article  Google Scholar 

  11. REMERO-GONZALEZ J, WALTON J C, PERALTA-VIDEA J R, RODRIGUEZ E, ROMERO J, GARDEA-TORRESDEY J L. Modeling the adsorption of Cr (III) from aqueous solution onto Agave lechuguilla biomass: Study of the advective and dispersive transport [J]. Journal of Hazardous Materials, 2009, 161(1): 360–365.

    Article  Google Scholar 

  12. KUMAR P A, RAY M, CHAKRABORTY S. Adsorption behaviour of trivalent chromium on amine-based polymer aniline formaldehyde condensate [J]. Chemical Engineering Journal, 2009, 149(1/3): 340–347.

    Article  Google Scholar 

  13. NARAYANAN N V, GANESAN M. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation [J]. Journal of Hazardous Materials, 2009, 161(1): 575–580.

    Article  Google Scholar 

  14. RAMIREZ E R, ORTEGA N L G, SOTO C A C, GUTIERREZ M T L. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite compounds [J]. Journal of Hazardous Materials, 2009, 172(2/3): 1527–1531.

    Article  Google Scholar 

  15. DAS D, SURESHKUMAR M K, RADHAKRISHNAN K, NUWAR J, PILLAI C G S. Adsorptive removal of Cr (III) from aqueous solution using tripolyphosphate cross-linked chitosan beads [J]. Journal of Radioanalytical and Nuclear Chemistry, 2011, 289(1): 275–285.

    Article  Google Scholar 

  16. LIU Jun-xia, LU Xu-jie. Study on the treatment for chromium-containing wastewater by fly ash [C]// Electrical and Control Engineering, Yichang: IEEE Conference Publications, 2011: 1794–1797.

    Google Scholar 

  17. GURU M, VENEDIK D, MURATHAN A. Removal of trivalent chromium from water using low-cost natural diatomite [J]. Journal of Hazardous Materials, 2008, 160(2/3): 318–323.

    Article  Google Scholar 

  18. IFTIKHAR A R, BHATTI H N, HANIF M A, NADEEM R. Kinetic and thermodynamic aspects of Cu (II) and Cr (III) removal from aqueous solutions using rose waste biomass [J]. Journal of Hazardous Materials, 2009, 161(2/3): 941–947.

    Article  Google Scholar 

  19. WU Y, ZHANG S Z, GUO X Y, HUANG H L. Adsorption of chromium (III) on lignin [J]. Bioresource Technology, 2008, 99(16): 7709–7715.

    Article  Google Scholar 

  20. WANG L H, LIN C I. Adsorption of chromium (III) ion from aqueous solution using rice hull ash [J]. Journal of the Chinese Institute of Chemical Engineers, 2008, 39(4): 367–373.

    Article  Google Scholar 

  21. YANG Zhi-hui, WANG Bing, CHAI Li-Yuan, WANG Yun-yan, WANG Hai-ying, SU Chang-qing. Removal of Cr (III) and Cr (VI) from aqueous solution by adsorption on sugarcane pulp residue [J]. Journal of Central South University Technology, 2009, 16(1): 101–107.

    Article  Google Scholar 

  22. GUPTA V K, JAIN C K, ALI I, SHARMA M, SAINI V K. Removal of cadmium and nickel from wastewater using bagasse fly ash—A sugar industry waste [J]. Water Research, 2003, 37(16): 4038–4044.

    Article  Google Scholar 

  23. NGAH W S W, HANAFIAH M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review [J]. Bioresource Technology, 2008, 99(10): 3935–3948.

    Article  Google Scholar 

  24. LIU Zhen-gang, ZHANG Fu-shen. Removal of lead from water using biochar prepared from hydrothermal liquefaction of biomassb [J]. Journal of Hazardous Materials, 2009, 85(1): 1–7.

    Google Scholar 

  25. MALKOC E, NUHOGLU Y. Potential of tea factory waste for chromium (VI) removal from aqueous solutions: Thermodynamic and kinetic studies [J]. Separation and Purification Technology, 2007, 54(3): 291–298.

    Article  Google Scholar 

  26. KIRAN I, AKAR T, TUNALI S. Biosorption of Pb(II) and Cu(II) from aqueous solutions by pretreated biomass of Neurospora crassa [J]. Process Biochemistry, 2005, 40(11): 3550–3558

    Article  Google Scholar 

  27. SHUKLA A, ZHANG Y H, DUBEY P, MARGRAVE J L, SHUKLA S S. The role of sawdust in the removal of unwanted materials from water [J]. Journal of Hazardous Materials, 2002, 95(1/2): 137–152.

    Article  Google Scholar 

  28. DOENMEZ G, AKSU Z. Removal of chromium(VI) from saline wastewaters by Dunaliella species[J]. Process Biochemistry, 2002, 38(5): 751–762.

    Article  Google Scholar 

  29. SARIN V, SINGH T S, PANT K K. Thermodynamic and breakthrough column studies for selective sorption of chromium from industrial effluents on activated eucalyptus bark [J]. Bioresource Technology, 2006, 97(16): 1986–1993.

    Article  Google Scholar 

  30. SUTEU D, BILBA D. Equilibrium and kinetic study of reactive dye Brilliant Red HE-3B adsorption by activated charcoal [J]. Acta Chimica Slovenica, 2005, 52(1): 73–79.

    Google Scholar 

  31. KARAOGLU M H, ZOR S, UGURLU M. Biosorption of Cr (III) from solutions using vineyard pruning waste [J]. Chemical Engineering Journal, 2010, 159(1/2/3): 98–106.

    Article  Google Scholar 

  32. KUBILAY S, GURKAN R, SAVRAN A, SAHAN T. Removal of Cu(II), Zn(II) and Co(II) ions from aqueous solutions by adsorption onto natural bentonite [J]. Adsorption, 2007, 13(1): 41–51.

    Article  Google Scholar 

  33. LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum [J]. Journal of the American Chemical Society, 1918, 40(9): 1361–1367.

    Article  Google Scholar 

  34. HALL K R, EAGLETON L C, ACRIVOS A, VERMEULEN T. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions [J]. Industrial & Engineering Chemistry Fundamental, 1966, 5(2): 212–223.

    Article  Google Scholar 

  35. FREUNDLICH H. Adsorption in solution [J]. Physical and Chemical Society, 1906, 40: 1361–1368.

    Google Scholar 

  36. HAN Run-ping, ZHANG Jing-jing, HAN Pan, WANG Yuan-feng, ZHAO Zhen-hui, TANG Ming-sheng. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite [J]. Chemical Engineering Journal, 2009, 145(3): 496–504.

    Article  Google Scholar 

  37. ALTUNDOGAN H S, ALTUNDOGAN S, TUMEN F, BILDIK M. Arsenic removal from aqueous solutions by adsorption on red mud [J]. Waste Management, 2000, 20(8): 761–767.

    Article  Google Scholar 

  38. HO Y S, MCKAY G. Comparative sorption kinetic studies of dye and aromatic compounds onto fly ash [J]. Journal of Environmental Science and Health, 1999, 34(5): 1179–1204.

    Article  Google Scholar 

  39. HAMEED B H, AHMAD A A, AZIZ N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash [J].Chemical Engineering Journal, 2007, 133(1/3): 195–203.

    Article  Google Scholar 

  40. MOHAN D, SINGH K P, SINGH V K. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth [J]. Journal of Hazardous Materials, 2006, 135(1/3): 280–295.

    Article  Google Scholar 

  41. KULA I, UGURLU M, KARAOGLU H, CELIK A. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation [J]. Bioresource Technology, 2008, 99(3): 492–501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-chun Yang  (杨卫春).

Additional information

Foundation item: Project(50925417) supported by the National Funds for Distinguished Young Scientist, China; Project(50830301) supported by the Key Program of National Natural Science Foundation of China; Project(51074191) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Zh., Xiong, S., Wang, B. et al. Cr(III) adsorption by sugarcane pulp residue and biochar. J. Cent. South Univ. 20, 1319–1325 (2013). https://doi.org/10.1007/s11771-013-1618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1618-4

Key words

Navigation