Skip to main content
Log in

Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

While various kinds of fibers are used to improve the hot mix asphalt (HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network (ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm (GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy (correlation coefficient of 0.96).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AIREY G D. Fundamental binder and practical mixture evaluation of polymer modified bituminous materials [J]. International Journal of Pavement Engineering, 2004, 5(3): 137–151.

    Article  Google Scholar 

  2. KIM Y R. Modeling of asphalt concrete [M]. Reston: McGraw-Hill Professional, 2009: 1–16

    Google Scholar 

  3. FITZGERALD R L. Novel applications of carbon fiber for hot mix asphalt reinforcement and carbon-carbon pre-forms [D]. Michigan: Michigan Technological University, 2000.

    Google Scholar 

  4. BENEDETTO H D, SOLTANI A A, CHAVEROT P. Fatigue damage for bituminous mixtures: A pertinent approach [J]. Journal of the Association of Asphalt Paving Technologists, 1996, 65: 142–158.

    Google Scholar 

  5. DANIEL J S, KIM Y R. Laboratory evaluation of fatigue damage and healing of asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2001, 13(6): 434–440.

    Article  Google Scholar 

  6. KHATTAK M J, BALADI G Y. Fatigue and permanent deformation models for polymer-modified asphalt mixtures [J]. Journal of the Transportation Research Board, 2001, 1767(1): 135–145.

    Article  Google Scholar 

  7. KIM Y R, LITTLE D N, LYTTON R L. Fatigue and healing characterization of asphalt mixtures [J]. Journal of Materials in Civil Engineering, 2003, 15(1), 75–83.

    Article  Google Scholar 

  8. HUANG Hai-ming, WHITE T D. Dynamic properties of fiber-modified overlay mixture [J]. Journal of the Transportation Research Board, 1996, 1545: 98–104.

    Article  Google Scholar 

  9. TAPKIN S. The effect of polypropylene fibers on asphalt performance [J]. Building and Environment, 2008, 43(6): 1065–1071.

    Article  Google Scholar 

  10. WU Shao-peng, YE Qun-shan, LI Ning. Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers [J]. Construction and Building Materials, 2008, 22(10): 2111–2115.

    Article  Google Scholar 

  11. SERFASS J P, SAMANOS J. Fiber-modified asphalt concrete characteristics, applications and behavior [J]. Journal of the Association of Asphalt Paving Technologists, 1996, 65: 193–230.

    Google Scholar 

  12. NAJD A, ZHENG Chuan-chao, GUO Jin-ying. Experiments of fracture behavior of glass fiber reinforced asphalt concrete [J]. Journal of Chang’an University, 2005, 25(3): 28–32.

    Google Scholar 

  13. JAHROMI S G, KHODAII A. Carbon fiber reinforced asphalt concrete [J]. The Arabian Journal for Science and Engineering, 2008, 33(2B): 355–364.

    Google Scholar 

  14. LEE S J, RUST J P, HAMOUDA H, KIM Y R, BORDEN R H. Fatigue cracking resistance of fiber-reinforced asphalt concrete [J]. Textile Research Journal, 2005, 75(2): 123–128.

    Article  Google Scholar 

  15. MONISMITH C L, EPPS J A, FINN F N. Improved asphalt mix design [J]. Journal of the Association of Asphalt Paving Technologists, 1985, 54: 347–406.

    Google Scholar 

  16. Shell pavement design manual: Asphalt pavements and overlays for road traffic [M]. London: Shell International Petroleum, 1978: 1–354.

  17. Research and development of the asphalt institute’s thickness design manual (ms-1). Ninth edition [M]. Lexington: Asphalt Institute, 1982: 1–204.

  18. TAYEBALI A A, TSAI B, MONISMITH C L. Stiffness of asphalt-aggregate mixes [M]. Washington DC: Strategic Highway Research Program, National Research Council, 1994.

    Google Scholar 

  19. BIRGISSON B, SORANAKOM C, NAPIER J A L, ROQUE R. Microstructure and fracture in asphalt mixtures using a boundary element approach [J]. Journal of Materials in Civil Engineering, 2004, 16(2): 116–121.

    Article  Google Scholar 

  20. HOSSAIN M, SWARTZ S, HOQUE E. Fracture and tensile characteristics of asphalt-rubber concrete [J]. Journal of Materials in Civil Engineering, 1999, 11(4): 287–294.

    Article  Google Scholar 

  21. READ J M, COLLOP A C. Practical fatigue characterization of bituminous paving mixtures [J]. Journal of the Association of Asphalt Paving Technologists, 1997, 66: 74–108.

    Google Scholar 

  22. BOSURGI G, TRIFIRÒ F. A model based on artificial neural networks and genetic algorithms for pavement maintenance management [J]. International Journal of Pavement Engineering, 2005, 6(3): 201–209.

    Article  Google Scholar 

  23. JAN J C, HUNG S L, CHI S Y, CHERN J C. Neural network forecast model in deep excavation [J]. Journal of Computing in Civil Engineering, 2002, 16(1): 59–65.

    Article  Google Scholar 

  24. JUANG C H, CHEN C J. CPT-Based liquefaction evaluation using artificial neural networks [J]. Computer-aided Civil and Infrastructure Engineering, 1999, 14(3): 221–229.

    Article  MathSciNet  Google Scholar 

  25. MIRZAHOSSEINI M R, AGHAEIFAR A, ALAVI A H, GANDOMI A H, SEYEDNOUR R. Permanent deformation analysis of asphalt mixtures using soft computing techniques [J]. Expert Systems with Applications, 2011, 38(5): 6081–6100

    Article  Google Scholar 

  26. NAZZAL M D, TATARI O. Evaluating the use of neural networks and genetic algorithms for prediction of subgrade resilient modulus [J]. International Journal of Pavement Engineering, 2012, 14(4): 364–373.

    Article  Google Scholar 

  27. OZGAN E. Artificial neural network based modelling of the Marshall stability of asphalt concrete [J]. Expert Systems with Applications, 2011, 38(5): 6025–6030.

    Article  Google Scholar 

  28. OZSAHIN T S, ORUC S. Neural network model for resilient modulus of emulsified asphalt mixtures [J]. Construction and Building Materials, 2008, 22(7): 1436–1445.

    Article  Google Scholar 

  29. RAKESH N, JAIN A K, REDDY M A, REDDY K S. Artificial neural networks-genetic algorithm based model for back calculation of pavement layer moduli [J]. International Journal of Pavement Engineering, 2006, 7(3): 221–230.

    Article  Google Scholar 

  30. XIAO Fei-peng, AMIRKHANIAN S N. Artificial neural network approach to estimating stiffness behavior of rubberized asphalt concrete containing reclaimed asphalt pavement [J]. Journal of Transportation Engineering, 2009, 135(8): 580–589.

    Article  Google Scholar 

  31. CURTEANU S, LEON F. Optimization strategy based on genetic algorithms and neural networks applied to a polymerization process [J]. International Journal of Quantum Chemistry, 2008, 108(4): 617–630.

    Article  Google Scholar 

  32. SEMNANI D, VADOOD M. Improvement of intelligent methods for evaluating the apparent quality of knitted fabrics [J]. Engineering Applications of Artificial Intelligence, 2010, 23(2): 217–221.

    Article  Google Scholar 

  33. Neural network toolbox documentation [EB/OL]. [2011-03-04]. http://ww.mathworks.com/help/toolbox/nnet.

  34. SOLTANI P, VADOOD M, JOHARI M S. Modeling spun yarns migratory properties using artificial neural network [J]. Fibers and Polymers, 2012, 13(9): 1190–1195.

    Article  Google Scholar 

  35. SHAHRABI J, HADAVANDI E, SOLTANI P. Developing an intelligent fiber migration simulator in spun yarns using a genetic fuzzy system [J]. Fibers and Polymers, 2013, 14(5): 844–853.

    Article  Google Scholar 

  36. VADOOD M, SEMNANI D. Optimization of fiber distribution in spunbond non-woven structure [J]. Fibers and Polymers, 2011, 12(6): 821–829.

    Article  Google Scholar 

  37. Global optimization toolbox documentation [EB/OL]. [2011-03-04]. http://www.mathworks.com/help/toolbox/gads.

  38. VADOOD M, SEMNANI D, MORSHED M. Optimization of acrylic dry spinning production line by using artificial neural network and genetic algorithm [J]. Journal of Applied Polymer Science, 2011, 120(2): 735–744.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Safar Johari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadood, M., Johari, M.S. & Rahai, A.R. Relationship between fatigue life of asphalt concrete and polypropylene/polyester fibers using artificial neural network and genetic algorithm. J. Cent. South Univ. 22, 1937–1946 (2015). https://doi.org/10.1007/s11771-015-2713-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2713-5

Key words

Navigation