Skip to main content
Log in

Delamination analysis of woven fabrication laminates using cohesive zone model

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A new test method was proposed to evaluate the cohesive strength of composite laminates. Cohesive strength and the critical strain energy for Mode-II interlamiar fracture of E-glass/epoxy woven fabrication were determined from the single lap joint (SLJ) and end notch flexure (ENF) test, respectively. In order to verify their adequacy, a cohesive zone model simulation based on interface finite elements was performed. A closed form solution for determination of the penalty stiffness parameter was proposed. Modified form of Park-Paulino-Roesler traction-separation law was provided and conducted altogether with trapezoidal and bilinear mixed-mode damage models to simulate damage using Abaqus cohesive elements. It was observed that accurate damage prediction and numerical convergence were obtained using the proposed penalty stiffness. Comparison between three damage models reveals that good simulation of fracture process zone and delamination prediction were obtained using the modified PPR model as damage model. Cohesive zone length as a material property was determined. To ensure the sufficient dissipation of energy, it was recommended that at least 4 elements should span cohesive zone length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRUNNER A, BLACKMAN B, DAVIES P. A status report on delamination resistance testing of polymer-matrix composites [J]. Engineering Fracture Mechanics, 2008, 75: 2779–2794.

    Article  Google Scholar 

  2. LIU P, YANG Y. Finite element analysis of the competition between crack deflection and penetration of fiber-reinforced composites using virtual crack closure technique [J]. Applied Composite Materials, 2014, 21: 759–771.

    Article  Google Scholar 

  3. JUDT P O, RICOEUR A, LINEK G. Crack path prediction in rolled aluminum plates with fracture toughness orthotropy and experimental validation [J]. Engineering Fracture Mechanics, 2015, 138: 33–48.

    Article  Google Scholar 

  4. DAVIS B, WAWRZYNEK P, HWANG C, INGRAFFEA A. Decomposition of 3-D mixed-mode energy release rates using the virtual crack extension method [J]. Engineering Fracture Mechanics, 2014, 131: 382–405.

    Article  Google Scholar 

  5. QIAN Z D, HU J. Fracture properties of epoxy asphalt mixture based on extended finite element method [J]. Journal of Central South University, 2012, 19: 3335–3341.

    Article  Google Scholar 

  6. DUGDALE D. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids 1960, 8: 100–104.

    Article  Google Scholar 

  7. BARENBLATT G. The mathematical theory of equilibrium cracks in brittle fracture [J]. Advances in Applied mechanics, 1962, 7: 55–129.

    Article  MathSciNet  Google Scholar 

  8. HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements [J]. Cement and Concrete Research, 1976, 6: 773–781.

    Article  Google Scholar 

  9. NEEDLEMAN A. An analysis of decohesion along an imperfect interface [J]. International Journal of Fracture, 1990, 42: 21–40.

    Article  Google Scholar 

  10. XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42: 1397–1434.

    Article  MATH  Google Scholar 

  11. NGUYEN V P, KERFRIDEN P, BORDAS S. Two-and three-dimensional isogeometric cohesive elements for composite delamination analysis [J]. Composites Part B: Engineering, 2014, 60: 193–212.

    Article  Google Scholar 

  12. VANDELLOS T, HUCHETTE C, CARRÈRE N. Proposition of a framework for the development of a cohesive zone model adapted to carbon-fiber reinforced plastic laminated composites [J]. Composite Structures, 2013, 105: 199–206.

    Article  Google Scholar 

  13. ZHANG Z J, PAULINO G H. Cohesive zone modeling of dynamic failure in homogeneous and functionally graded materials [J]. International Journal of Plasticity, 2005, 21: 1195–1254.

    Article  MATH  Google Scholar 

  14. SONG S H, PAULINO G H, BUTTLAR W G. Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model [J]. Journal of Engineering Mechanics, 2006, 132: 1215–1223.

    Article  Google Scholar 

  15. PARK K, PAULINO G H, ROESLER J R. Determination of the kink point in the bilinear softening model for concrete [J]. Engineering Fracture Mechanics, 2008, 75: 3806–3818.

    Article  Google Scholar 

  16. de MORAIS A, PEREIRA A, de MOURA M. Mode III interlaminar fracture of carbon/epoxy laminates using the six-point edge crack torsion (6ECT) [J]. Composites Part A: Applied Science and Manufacturing, 2011, 42: 1793–1799.

    Article  Google Scholar 

  17. ZHAO L, GONG Y, ZHANG J, CHEN Y, FEI B. Simulation of delamination growth in multidirectional laminates under mode I and mixed mode I/II loadings using cohesive elements [J]. Composite Structures, 2014, 116: 509–522.

    Article  Google Scholar 

  18. de MORAIS A. Mode I cohesive zone model for delamination in composite beams [J]. Engineering Fracture Mechanics, 2013, 109: 236–245.

    Article  Google Scholar 

  19. de MORAIS A. Cohesive zone beam modelling of mixed-mode I–II delamination [J]. Composites Part A: Applied Science and Manufacturing, 2014, 64: 124–131.

    Article  Google Scholar 

  20. KHOSHRAVAN M R, MOSLEMI M. Investigation on mode III interlaminar fracture of glass/epoxy laminates using a modified split cantilever beam test [J]. Engineering Fracture Mechanics, 2014, 127: 267–279.

    Article  Google Scholar 

  21. de MOURA M, CAMPILHO R, GONÇALVES J. Pure mode II fracture characterization of composite bonded joints [J]. International Journal of Solids and Structures, 2009, 46: 1589–1595.

    Article  MATH  Google Scholar 

  22. LILJEDAHL C, CROCOMBE A, WAHAB M A, ASHCROFT I. Damage modelling of adhesively bonded joints [J]. International Journal of Fracture, 2006, 141: 147–161.

    Article  Google Scholar 

  23. LIU P, ISLAM M. A nonlinear cohesive model for mixed-mode delamination of composite laminates [J]. Composite Structures, 2013, 106: 47–56.

    Article  Google Scholar 

  24. BLACKMAN B, HADAVINIA H, KINLOCH A, WILLIAMS J. The use of a cohesive zone model to study the fracture of fibre composites and adhesively-bonded joints [J]. International Journal of Fracture, 2003, 119: 25–46.

    Article  Google Scholar 

  25. SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material [J]. Engineering Fracture Mechanics, 2006, 73: 2829–2848.

    Article  Google Scholar 

  26. KAFKALIDIS M, THOULESS M D, YANG Q, WARD S. Deformation and fracture of adhesive layers constrained by plastically-deforming adherends [J]. Journal of Adhesion Science and Technology, 2000, 14: 1593–1607.

    Article  Google Scholar 

  27. TURON A, DAVILA C G, CAMANHO P P, COSTA J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models [J]. Engineering Fracture Mechanics, 2007, 74: 1665–1682.

    Article  Google Scholar 

  28. ALVAREZ D, BLACKMAN B, GUILD F, KINLOCH A. Mode I fracture in adhesively-bonded joints: A mesh-size independent modelling approach using cohesive elements [J]. Engineering Fracture Mechanics, 2014, 115: 73–95.

    Article  Google Scholar 

  29. PARK K, PAULINO G H, ROESLER J R. A unified potential-based cohesive model of mixed-mode fracture [J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 891–908.

    Article  Google Scholar 

  30. ZOU Z, REID S, LI S, SODEN P. Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation [J]. Journal of Composite Materials, 2002, 36: 477–499.

    Article  Google Scholar 

  31. CAMANHO P P, DAVILA C, de MOURA M. Numerical simulation of mixed-mode progressive delamination in composite materials [J]. Journal of Composite Materials, 2003, 37: 1415–1438.

    Article  Google Scholar 

  32. BENZEGGAGH M, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus [J]. Composites Science and Technology, 1996, 56: 439–449.

    Article  Google Scholar 

  33. ANDERSSON T, STIGH U. The stress–elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces [J]. International Journal of Solids and Structures, 2004, 41: 413–434.

    Article  Google Scholar 

  34. LEFFLER K, ALFREDSSON K, STIGH U. Shear behaviour of adhesive layers [J]. International Journal of Solids and Structures, 2007, 44: 530–545.

    Article  MATH  Google Scholar 

  35. CAMPILHO R, de MOURA M, DOMINGUES J. Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs [J]. International Journal of Solids and Structures, 2008, 45: 1497–1512.

    Article  MATH  Google Scholar 

  36. CARLSSON L, ADAMS D F, PIPES R B. Experimental characterization of advanced composite materials [M]. United States: CRC Press, 2002.

    Google Scholar 

  37. HUI C Y, JAGOTA A, BENNISON S, LONDONO J. Crack blunting and the strength of soft elastic solids [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 2003, 459: 1489–1516.

    Article  MATH  Google Scholar 

  38. FALK M L, NEEDLEMAN A, RICE J R. A critical evaluation of cohesive zone models of dynamic fracture [J]. Le Journal de Physique IV, 2001, 11: Pr5-43-Pr5-50.

    Google Scholar 

  39. IRWIN G. Plastic zone near a crack and fracture toughness [C]// Proceedings of the Seventh Sagamore Ordance Materials Conference. New York: Syracuse University, 1960, IV: 63–78.

    Google Scholar 

  40. MOËS N, BELYTSCHKO T. Extended finite element method for cohesive crack growth [J]. Engineering Fracture Mechanics, 2002, 69: 813–833.

    Article  Google Scholar 

  41. DÁVILA C G, CAMANHO P P, de MOURA M F. Mixed-mode decohesion elements for analyses of progressive delamination [J]. Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Seattle: NASA, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Moslemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moslemi, M., Khoshravan azar, M. Delamination analysis of woven fabrication laminates using cohesive zone model. J. Cent. South Univ. 23, 27–38 (2016). https://doi.org/10.1007/s11771-016-3045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3045-9

Key words

Navigation