Skip to main content
Log in

Measurement and numerical analysis of influence of key stratum breakage on mine pressure in top-coal caving face with super great mining height

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To analyze the influence of movement in shallow-buried working faces with large mining heights on mine pressure manifestation, the key stratum at a working face was categorised using the 1313 top-coal caving face with super great mining height under cover as a case study. The research combined theoretical analysis, field measurement, and numerical simulation to analyze the influencing mechanism of key stratum. Moreover, the research results were verified by numerical simulation and indicate that the sub-key stratum is prone to be broken to form a “cantilever beam” structure rather than a stable hinged structure during the excavation of working faces with super great mining heights. When the “cantilever beam” structure is unstable, a low pressure will occur on the working face, and the overlying strata will subside simultaneously with the sub-key stratum to induce the breakage of the primary key stratum: the breakage will further trigger the periodic breakage of sub-key stratum, causing a greater load on the working face. Finally, steps, and strength of weighting in the working face vary to be great or small alternatively. This is the main reason explaining why the 1313 working face shows strong mine pressure manifestation. The results provide theoretical and practical experience for forecasting and controlling mine pressure manifestation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Jin-hua. Key technology for fully-mechanized top coal caving with large mining height in extra-thick coal seam [J]. Journal of China Coal Society, 2013, 38(12): 2089–2098. (in Chinese)

    Google Scholar 

  2. YUN Dong-feng, LIU Zhu, CHENG Wen-dong, FAN Zheng-dong, WANG Dong-fang, ZHANG Yuan-hao. Monitoring strata behavior due to multi-slicing top coal caving longwall mining in steeply dipping extra thick coal seam [J]. International Journal of Mining Science and Technology, 2017, 27(1): 179–184.

    Article  Google Scholar 

  3. CHANG Ju-cai, XIE Guang-xiang, ZHANG Xue-hui. Analysis of rib spalling mechanism of fully-mechanized top-coal caving face with great mining height in extra-thick coal seam [J]. Rock and Soil Mechanics, 2015, 36(3): 803–808. (in Chinese)

    Google Scholar 

  4. GUO Xin-shan, LIU Jin-hai, JIANG Fu-xing. In-situ observation and numerical analysis of roof movement features of fully-mechanized sublevel caving face with deep alluvium [J]. Journal of Mining & Safety Engineering, 2015, 32(3): 401–406. (in Chinese)

    Google Scholar 

  5. HUANG Qing-xiang. Structural analysis of main roof stability during first weighting in longwall face [J]. Chinese Journal of Rock Mechanics & Engineering, 1998, 17(5): 521–526. (in Chinese)

    Google Scholar 

  6. GONG Pei-lin, JIN Zhong-ming. Mechanical model study on roof control for fully-mechanized coal face with large mining height [J]. Chinese Journal of Rock Mechanics & Engineering, 2008, 27(1): 193–198. (in Chinese)

    Google Scholar 

  7. JU Jin-feng, XU Jia-lin, WANG Qing-xiong. Cantilever structure moving type of key strata and its influence on ground pressure in large mining height workface [J]. Journal of China Coal Society, 2011, 36(12): 2115–2120. (in Chinese)

    Google Scholar 

  8. ZHANG Jian-gong, MIAO Xie-xing, HUANG Yan-li, LI Meng. Fracture mechanics model of fully mechanized top coal caving of shallow coal seams and its application [J]. International Journal of Mining Science & Technology, 2014, 24(3): 349–352.

    Article  Google Scholar 

  9. LAI Xing-ping, SHAN Peng-fei, ZHENG Jian-wei, CAO Jian-tao, CUI Feng, WANG Chun-long. Physical simulation on strata behavior of large mining height fully mechanized face in shallow-buried and thick seam [J]. Journal of Mining & Safety Engineering, 2014, 31(3): 418–423. (in Chinese)

    Google Scholar 

  10. YU Bin, ZHAO Jun, KUANG Tie-jun, MENG Xiang-bin. In situ investigations into overburden failures of a super-thick coal seam for longwall top coal caving [J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 78: 155–162.

    Article  Google Scholar 

  11. LI Yang, ZHU En-guang, ZHANG Kang-ning, LI Ming-hao, WANG Jia-xing, LI Cheng-kun. Longwall mining under gateroads and gobs of abandoned small mine [J]. International Journal of Mining Science and Technology, 2017, 27(1): 145–152.

    Article  Google Scholar 

  12. QIAN Ming-gao. Key stratum theory of overlying strata control [M]. Xuzhou: China University of Mining & University Press, 2003. (in Chinese)

    Google Scholar 

  13. XU Jia-lin, QIAN Ming-gao. Method to distinguish key strata in overburden [J]. Journal of China University of Mining & Technology, 2000, 29(5): 463–467. (in Chinese)

    Google Scholar 

  14. QIAN Ming-gao, SHI Ping-wu, XU Jia-lin. Ground pressure and strata control [M]. Xuzhou: China University of Mining & University Press, 2010. (in Chinese)

    Google Scholar 

  15. JU Jin-feng, XU Jia-lin. Surface stepped subsidence related to top-coal caving long wall mining of extremely thick coal seam under shallow cover [J]. International Journal of Rock Mechanics & Mining Sciences, 2015, 78: 27–35.

    Article  Google Scholar 

  16. GUO Wei-bin, LIU Chang-you, WU Feng-feng, YANG Pei-ju, WU Sheng-fu. Analyses of support crushing accidents and support working resistance in large mining height workface with hard roof [J]. Journal of China Coal Society, 2014, 39(7): 1212–1219. (in Chinese)

    Google Scholar 

  17. XU Jia-lin, JU Jin-feng. Structural morphology of key stratum and its influence on strata behaviors in fully-mechanized face with super-large mining height [J]. Journal of china coal society, 2011, 30(8): 1547–1556. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-xiong Zhang  (张吉雄).

Additional information

Foundation item: Project(2015-29) supported by Jiangsu Distinguished Professor, China; Project(BRA2015311) supported by the Jiangsu Province Fourth 333 Engineering, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, Jx., Huang, Yl. et al. Measurement and numerical analysis of influence of key stratum breakage on mine pressure in top-coal caving face with super great mining height. J. Cent. South Univ. 24, 1881–1888 (2017). https://doi.org/10.1007/s11771-017-3595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3595-5

Key words

Navigation