Skip to main content
Log in

Upper bound analysis of ultimate pullout capacity of shallow 3-D circular plate anchors based on nonlinear Mohr-Coulomb failure criterion

非线性Mohr-Coulomb 破坏准则下浅埋三维圆形锚板极限抗拔力上限分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules, the three-dimensional (3-D) axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity (UPC) is determined. A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory. By using difference principle, the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained. The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied. The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor, surface overload, initial cohesion, geomaterial density and friction angle increase. The failure surface is similar to a symmetrical spatial funnel, and its shape is mainly determined by dimensionless parameter m; the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density. As the dimensionless parameter m=2.0, the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution. In addition, the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.

摘要

基于非线性 Mohr-Coulomb 强度准则及相关流动法则, 构建了浅埋水平圆形锚板承受极限抗拔力时上方土体的三维轴对称破坏机制; 利用变分原理, 推导出三维轴对称破坏曲面在平面上投影函数的导函数。 利用差分原理迭代获得了满足边界条件的破坏面原函数及其与之对应的极限抗拔力函数数值解答; 进一步分析了非线性 MC 参数变化对圆形浅埋锚板极限抗拔力和破坏模式的影响规律。 结果表明: 圆形锚板极限抗拔力随无量纲参数m 的增大而减小, 锚板埋深、 锚板半径、 地表超载、 初始粘聚力、 土体重度以及土体摩擦角的增大而增大, 随土体单轴抗拉强度的增大而减小; 圆形锚板上方土体破坏面呈对称的空间漏斗形态, 且其形状主要取决于无量纲参数 m; 地表破坏范围随锚板半径、 锚板埋深、 初始粘聚力的增大而增大, 随土体单轴抗拉强度、 土体重度的增大而减小。 在无量纲参数 m=2.0 时的特殊条件下, 极限抗拔力精确解与数值解对比分析证明了本文基于差分法原理数值解答的可行性和有效性。 同时, 对比分析了变分法与上限法的极限抗拔力计算结果, 表明在极限分析上限法理论框架内, 变分分析方法结果优于上限法结果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MEYERHOF G G, ADAMS J I. Ultimate uplift capacity of foundation [J]. Canadian Geotechnical Journal, 1968, 5(4): 225–244.

    Article  Google Scholar 

  2. DAS B M. Model tests for uplift capacity of foundations in clay [J]. Geomaterials and Foundations, 1978, 18(2): 17–24.

    Google Scholar 

  3. MURRAY E J, GEDDES J D. Uplift of plate anchors in sand [J]. Journal of Geotechnical Engineering, ASCE, 1987, 113(3): 202–215.

    Article  Google Scholar 

  4. QIAN P Y, LIU Z D. Distortion and failure character of shallow buried inclined anchors [J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 62–66. (in Chinese)

    Google Scholar 

  5. HE S M. Study on bearing capacity of uplift anchor foundation [J]. Underground Space, 2002, 22(2): 145–148.

    Google Scholar 

  6. ILAMPARUTHI K, DICKIN E A, MUTHUKRISHNAIAH K. Experimental investigation of the uplift capacity of circular plate anchors in sand [J]. Canadian Geotechnical Journal, 2002, 39(3): 648–664.

    Article  Google Scholar 

  7. CHU X F, LI Z G, WANG R, ZHU C Q. The test research of anchor‘s uplift behavior in calcareous sand [J]. Rock and Soil mechanics, 2002, 23(3): 368–371. (in Chinese)

    Google Scholar 

  8. ZHU C Q, CHU X F. Calcareous sand in the limits of plate anchor uplift force calculation [J]. Rock and Soil Mechanics, 2003, 24: 153–158. (in Chinese)

    Google Scholar 

  9. DING P M, XIAO Z B, ZHANG Q L, QIU T. Uplift capacity of plate anchors in sand [J]. Journal of Building Structures. 2003, 24(5): 82–91.

    Google Scholar 

  10. DICKIN E A, LAMAN M. Uplift response of strip anchors in cohesionless geomaterial [J]. Advances in Engineering Software, 2007, 38(9): 618–625.

    Article  Google Scholar 

  11. LIU W B. The bearing behavior and calculation of the anti-uplift foundation [M]. Shanghai: Shanghai Jiao Tong University Press, 2007.

    Google Scholar 

  12. BOUAZZA A And FINLAY T W. Uplift capacity of plate anchors buried in a two-layered sand [J]. Géotechnique, 1990, 40(2): 293–297.

    Article  Google Scholar 

  13. LIU H Q, HUANG J Z. Vertical uplift capacity of horizontal plate anchors [J]. Geotechnical Engineering Technique, 2007, 21(1): 25–27.

    Google Scholar 

  14. GHALY A, HANNA A. Ultimate pullout resistance of single vertical anchors [J]. Canadian Geotechnical Journal, 1994, 31(5): 661–672.

    Article  Google Scholar 

  15. MERIFIELD R S, LYAMIN A V, SLOAN S W. Three-dimensional lower bound solutions for the stability of plate anchors in sand [J]. Géotechnique, 2006, 56(2): 123–132.

    Article  Google Scholar 

  16. KOUZER K M, KUMAR J. Vertical uplift capacity of equally spaced horizontal strip anchors in sand [J]. International Journal of Geomechanics, ASCE, 2009, 9(5): 230–236.

    Article  Google Scholar 

  17. KOUZER K M, KUMAR J. Vertical uplift capacity of two interfering horizontal anchors in sand using an upper bound limit analysis [J]. Computers and Geotechnics, 2009, 36(6): 1084–1089.

    Article  Google Scholar 

  18. KHATRI V N, KUMAR J. Vertical uplift resistance of circular plate anchors in clays under undrained condition [J]. Computers and Geotechnics, 2009, 36(8): 1352–1359.

    Article  Google Scholar 

  19. BHATTACHARYA P, KUMAR J. Uplift capacity of anchors in layered sand using finite-element limit analysis: Formulation and results [J]. International Journal of Geomechanics, 2016, 16(3): 04015078.

    Article  Google Scholar 

  20. BHATTACHARYA P, KUMAR J. Uplift capacity of strip and circular anchors in soft clay with an overlay of sand layer [J]. Geotechnical and Geological Engineering, 2015, 33(6): 1475–1488.

    Article  Google Scholar 

  21. KUMAR J, KOUZER K M. Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements [J]. Canadian Geotechnical Journal, 2008, 45(5): 698–704.

    Article  Google Scholar 

  22. KHATRI V N, KUMAR J. Vertical uplift resistance of circular plate anchors in clays under undrained condition [J]. Computers and Geotechnics, 2009, 36(8): 1352–1359.

    Article  Google Scholar 

  23. SMITH C C. Limit loads for a shallow anchor/ trapdoor embedded in a non-associative Coulomb soil [J]. Géotechnique, 2012, 62(7): 563–571.

    Article  Google Scholar 

  24. ROWE R K, DAVIS E H. The behaviour of plate anchors in sand [J]. Géotechnique, 1982, 32(1): 9–23.

    Article  Google Scholar 

  25. LIU W B, ZHOU J. Partical flow code numerical simulation of extended foundation under the action of uplift loading [J]. Journal of Hydraulic Engineering, 2004, 35(12): 69–76.

    Google Scholar 

  26. WAND D, HU Y X, RANDOLPH M F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(2): 355–365.

    Article  Google Scholar 

  27. YU L, LIU J, KONG X J, HU Y X. Three-dimensional numerical analysis of the keying of vertically installed plate anchors in clay [J]. Computers and Geotechnics, 2009, 36(4): 558–567.

    Article  Google Scholar 

  28. GIAMPA J R, BRADSHAW A S, SCHNEIDER J A. Influence of dilatation angle on drained shallow circular anchor uplift capacity [J]. International Journal of Geomechanics (ASCE), 2017, 17(2): 04016056. DOI: 10.1061/(ASCE) GM.1943-5622.0000725.

    Article  Google Scholar 

  29. HOEK E. Strength of joined rock masses [J]. Géotechnique, 1983, 33(3): 187–223.

    Article  Google Scholar 

  30. AGAR J G, MORGENSTERN N R, SCOTT J. Shear strength and stress-strain behavior of Athabasca oil sand at elevated temperatures and pressures [J]. Canadian Geotechnical Journal, 1987, 24(1): 1–10.

    Article  Google Scholar 

  31. SANTARELLI F J. Theoretical and experimental investigation of the stability of the axisymmetric borehole [D]. London: University of London, 1987.

    Google Scholar 

  32. CHEN W F, LIU X L. Limit analysis in geomaterial mechanics [M]. Amsterdam: Elsevier Science, 1990.

    Google Scholar 

  33. MAKSIMOVIC M. Nonlinear failure envelope for geomaterials [J]. Journal of Geotechnical Engineering, ASCE, 1989, 115(4): 581–586.

    Article  Google Scholar 

  34. BAKER R. Nonlinear Mohr envelopes based on triaxial data [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004, 130(5): 498–506.

    Article  Google Scholar 

  35. HOEK E, BRAY J W. Rock slope engineering [M]. London: The Institution of Mining and Metallurgy, 1981.

    Google Scholar 

  36. ZHAO L H, LI L, YANG X L, DAN H C, ZOU J F. Calculating method of upper bound for ultimate pullout capacity of vertically loaded strip plate anchors based on nonlinear Mohr-Coulomb failure criterion [J]. Journal of Central South University (Science and Technology), 2009, 40(5): 1444–1450. (in Chinese)

    Google Scholar 

  37. ZHAO L H, LUO Q, LI L, DAN H C. Ultimate pullout capacity of horizontal rectangular plate anchors [J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1414–1420.

    Google Scholar 

  38. ZHAO L H, LI L, YANG F, LIU X. Joined influences of nonlinearity and dilation on the ultimate pullout capacity of horizontal shallow plate anchors by energy dissipation method [J]. International Journal of Geomechanics, ASCE, 2011, 11(3): 195–201.

    Article  Google Scholar 

  39. WANG H T, LI S C, WANG Q, MIAO S J, JIANG B. Limit analysis of ultimate pullout capacity of shallow horizontal strip plate anchor based on nonlinear failure criterion [J]. Engineering Mechanics, 2014, 31(2): 131–138.

    Google Scholar 

  40. ZHANG X J, CHEN W F. Stability analysis of slopes with general nonlinear failure criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(1): 33–50.

    Article  MATH  Google Scholar 

  41. DRESCHER A, CHRISTOPOULOS C. Limit analysis slope stability with nonlinear yield condition [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(3): 341–345.

    Article  Google Scholar 

  42. ZHAO L H, CHENG X, DAN H C, TANG Z P, ZHANG Y B. Effect of vertical earthquake component on the permanent seismic displacement of soil slopes based on the nonlinear Mohr-Coulomb failure criterion [J]. Soil and Foundations, 2017, 57(2): 237–251.

    Article  Google Scholar 

  43. DENG D P, LI L, ZHAO L H. Limit equilibrium analysis for rock slope stability using basic Hoek–Brown strength criterion [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 24(9): 2154–2163.

    Google Scholar 

  44. COLLINS I F, GUNN C I, PENDER M J, WANG Y. Slope stability analyses for materials with nonlinear failure envelope [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12(6): 533–550.

    Article  Google Scholar 

  45. TANG G P, ZHAO L H, LI L, CHEN J Y. Combined influence of nonlinearity and dilation on slope stability evaluated by upper-bound limit analysis [J]. Journal of Central South University, 2017, 24(7): 1602–1611.

    Article  Google Scholar 

  46. ZHAO L H, LI L, YANG F, LUO Q, LIU X. Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique [J]. Journal of Central South University of Technology, 2010, 17(4): 836–844.

    Article  Google Scholar 

  47. ZHAO L H, YANG F, ZHANG Y B, DAN H C, LIU W Z. Effects of shear strength reduction strategies on safety factor of homogeneous slope based on a general nonlinear failure criterion [J]. Computers and Geotechnics, 2015, 63: 215–228.

    Article  Google Scholar 

  48. ZHAO L H, CHENG X, LI L, CHEN J Q, ZHANG Y B. Seismic displacement along a log-spiral failure surface with crack using rock Hoek-Brown failure criterion [J]. Soil Dynamics and Earthquake Engineering, 2017, 99(12): 74–85.

    Article  Google Scholar 

  49. HUANG F, YANG X L, LING T H. Prediction of collapsing region above deep spherical cavity roof under axis-symmetrical conditions [J]. Rock Mechanics and Rock Engineering, 2014, 47: 1511–1516.

    Article  Google Scholar 

  50. FRALDI M, GUARRACINO F. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(4): 665–673.

    Article  Google Scholar 

  51. FRALDI M, GUARRACINO F. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures, 2010, 47(2): 216–223.

    Article  MATH  Google Scholar 

  52. FRALDI M, GUARRACINO F. Limit analysis of progressive tunnel failure of tunnels in Hoek–Brown rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50(2): 170–173.

    Article  Google Scholar 

  53. HUANG F, YANG X L, ZHAO L H, HUANG K. Upper bound solution of ultimate pullout capacity of strip plate anchor based on Hoek-Brown failure criterion [J]. Rock and Soil Mechanics, 2012, 33(1): 183–188, 194. (in Chinese)

    Google Scholar 

  54. TAN Y G, ZUO S, HU S H, YANG X P. Study on the ultimate pullout capacity of 3-D shallow circle plate anchors [J]. Journal of Railway Science and Engineering, 2017, 14(6): 1166–1173. (in Chinese)

    Google Scholar 

  55. MERIFIELD R S, SLOAN S W. The ultimate pullout capacity of anchors in frictional soils [J]. Canadian Geotechnical Journal, 2006, 43(8): 852–868.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-heng Zhao  (赵炼恒) or Dong-ping Deng  (邓东平).

Additional information

Foundation item: Project(51478477) supported by the National Natural Science Foundation of China; Project(2016CX012) supported by the Innovation-driven Project of Central South University, China; Project(2014122006) supported by the Guizhou Provincial Department of Transportation Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Lh., Tan, Yg., Hu, Sh. et al. Upper bound analysis of ultimate pullout capacity of shallow 3-D circular plate anchors based on nonlinear Mohr-Coulomb failure criterion. J. Cent. South Univ. 25, 2272–2288 (2018). https://doi.org/10.1007/s11771-018-3912-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3912-7

Key words

关键词

Navigation