Skip to main content
Log in

Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in-situ stress

开挖卸荷条件下含多条结构面硬岩巷道的破坏特性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Natural geological structures in rock (e.g., joints, weakness planes, defects) play a vital role in the stability of tunnels and underground operations during construction. We investigated the failure characteristics of a deep circular tunnel in a rock mass with multiple weakness planes using a 2D combined finite element method/discrete element method (FEM/DEM). Conventional triaxial compression tests were performed on typical hard rock (marble) specimens under a range of confinement stress conditions to validate the rationale and accuracy of the proposed numerical approach. Parametric analysis was subsequently conducted to investigate the influence of inclination angle, and length on the crack propagation behavior, failure mode, energy evolution, and displacement distribution of the surrounding rock. The results show that the inclination angle strongly affects tunnel stability, and the failure intensity and damage range increase with increasing inclination angle and then decrease. The dynamic disasters are more likely with increasing weak plane length. Shearing and sliding along multiple weak planes are also consistently accompanied by kinetic energy fluctuations and surges after unloading, which implies a potentially violent dynamic response around a deeply-buried tunnel. Interactions between slabbing and shearing near the excavation boundaries are also discussed. The results presented here provide important insight into deep tunnel failure in hard rock influenced by both unloading disturbance and tectonic activation.

摘要

岩石中存在的自然地质构造(如节理、弱面、缺陷等)对巷道和地下工程的稳定性起着至关重要 的作用。本文采用二维有限元/离散耦合数值仿真技术(FEM/DEM)分析了多条结构面(弱面)与开挖卸荷 共同作用下深埋圆形巷道的破坏特征。对典型的硬岩(大理岩)试件进行了不同围压下的常规三轴压缩 试验, 验证了该数值仿真技术的合理性和准确性。采用参数分析研究了结构面倾角与长度对围岩裂纹 扩展行为、破坏模式、能量演化和位移分布的影响。结果表明, 在含有多条结构面的情况下, 倾角对 巷道稳定性具有较为明显的影响, 且破坏程度随着倾角的增加呈现先增后降的趋势。随着结构面长度 的增加, 巷道发生动力灾害的可能性逐渐增大。开挖卸荷后, 结构面活化导致层间发生相互剪切和滑 移, 模型内动能出现起伏和波动, 体现出较为明显的的动力响应特征。讨论了开挖边界附近板裂化破 坏与剪切破坏之间的相互作用。研究结果为分析开挖卸荷与构造活动作用下深埋硬岩巷道破坏特性提 供了重要依据。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHEN Jun-tao, ZHAO Jin-hai, ZHANG Shi-chuan, ZHANG Yi, YANG Fan, LI Ming. An experimental and analytical research on the evolution of mining cracks in deep floor rock mass [J]. Pure and Applied Geophysics, 2020. DOI: https://doi.org/10.1007/s00024-020-02550-9.

  2. CAI M, KAISER P K. In-situ rock spalling strength near excavation boundaries [J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 659–675. DOI: https://doi.org/10.1007/s00603-013-0437-0.

    Article  Google Scholar 

  3. FENG Fan, LI Xi-bing, ROSTAMI J, PENG Ding-xiao, LI Di-yuan, DU Kun. Numerical investigation of hard rock strength and fracturing under polyaxial compression based on mogi-coulomb failure criterion [J]. International Journal of Geomechanics, 2019, 19(4): 04019005. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001352.

    Article  Google Scholar 

  4. FENG Fan, CHEN Shao-jie, LI Di-yuan, HU Song-tao, HUANG Wan-peng, LI Bo. Analysis of fractures of a hard rock specimen via unloading of central hole with different sectional shapes [J]. Energy Science & Engineering, 2019, 7(6): 2265–2286. DOI: https://doi.org/10.1002/ESE3.432.

    Article  Google Scholar 

  5. GU Xue-bin, GUO Wei-yao, ZHAO Tong-bin, SHEN Bao-tang, ZHANG Dong-xiao. Biaxial physical simulation test of rock burst in circular tunnel under influence of lateral pressure [J]. Journal of Shandong University of Science and Technology (Natural Science), 2020, 39(1): 46–52. (in Chinese)

    Google Scholar 

  6. LUO Yong, GONG Feng-qiang, LI Xi-bing, WANG Shan-yong. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  7. ZHAO Zeng-hui, TAN Yun-liang, CHEN Shao-jie, MA Qing, GAO Xiao-jie. Theoretical analyses of stress field in surrounding rocks of weakly consolidated tunnel in a high-humidity deep environment [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104064. DOI: https://doi.org/10.1016/j.ijrmms.2019.104064.

    Article  Google Scholar 

  8. LI Xi-bing, CAO Wen-zhuo, ZHOU Zi-long, ZOU Yang. Influence of stress path on excavation unloading response [J]. Tunnelling and Underground Space Technology, 2014, 42: 237–246. DOI: https://doi.org/10.1016/j.tust.2014.03.002.

    Article  Google Scholar 

  9. LI Xi-bing, GONG Feng-qiang, TAO Ming, DONG Long-jun, DU Kun, MA Chun-de, ZHOU Zi-long, YIN Tu-bing. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782. DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  10. QIN Zhong-cheng, CHEN Guang-bo, LI Tan, SUN Wei, FU Biao. Experimental study on determining “key strata of energy” of rock burst [J]. Journal of Shandong University of Science and Technology (Natural Science), 2018, 37(6): 1–10. (in Chinese)

    Google Scholar 

  11. VERNIK L, ZOBACK M D. Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the Cajon Pass Scientific Research borehole [J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 5109–5119. DOI: https://doi.org/10.1029/91JB01673.

    Article  Google Scholar 

  12. HUANG W P, LI C, ZHANG L W, YUAN Q, ZHENG Y S, LIU Y. In situ identification of water-permeable fractured zone in overlying composite strata [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 85–97. DOI: https://doi.org/10.1016/j.ijrmms.2018.03.013.

    Article  Google Scholar 

  13. PENG Kang, LIU Zhao-peng, ZOU Quan-le, ZHANG Zhen-yu, ZHOU Jia-qi. Static and dynamic mechanical properties of granite from various burial depths [J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3545–3566. DOI: https://doi.org/10.1007/s00603-019-01810-y.

    Article  Google Scholar 

  14. LI Xi-bing. Rock dynamics fundamentals and applications [M]. Beijing, Science Press, 2014.

    Google Scholar 

  15. LI Xi-bing, ZHOU Zi-long, LOK Tat-seng, HONG Liang, YIN Tu-bing. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: https://doi.org/10.1016/j.ijrmms.2007.08.013.

    Article  Google Scholar 

  16. FENG Fan, LI Xi-bing, ROSTAMI J, LI Di-yuan. Modeling hard rock failure induced by structural planes around deep circular tunnels [J]. Engineering Fracture Mechanics, 2019, 205: 152–174. DOI: https://doi.org/10.1016/j.ijimpeng.2008.11.009.

    Article  Google Scholar 

  17. JIA Peng, ZHU Wan-cheng. Dynamic-static coupling analysis on rockburst mechanism in jointed rock mass [J]. Journal of Central South University, 2012, 19(11): 3285–3290. DOI: https://doi.org/10.1007/s11771-012-1405-7.

    Article  Google Scholar 

  18. CHEN Miao, YANG Sheng-qi, RANJITH P G, ZHANG Yuan-chao. Cracking behavior of rock containing nonpersistent joints with various joints inclinations [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102701. DOI: https://doi.org/10.1016/j.tafmec.2020.102701.

    Article  Google Scholar 

  19. SNELLING P E, GODIN L, MCKINNON S D. The role of geologic structure and stress in triggering remote seismicity in Creighton Mine, Sudbury, Canada [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 166–179. DOI: https://doi.org/10.1016/j.ijrmms.2012.10.005.

    Article  Google Scholar 

  20. LIU Guo-feng, FENG Xia-ting, JIANG Quan, YAO Zhi-bin, LI Shao-jun. In situ observation of spalling process of intact rock mass at large cavern excavation [J]. Engineering Geology, 2017, 226: 52–69. DOI: https://doi.org/10.1016/j.enggeo.2017.05.012.

    Article  Google Scholar 

  21. LI Xi-bing, FENG Fan, LI Di-yuan. Numerical simulation of rock failure under static and dynamic loading by splitting test of circular ring [J]. Engineering Fracture Mechanics, 2018, 188: 184–201. DOI: https://doi.org/10.1016/j.engfracmech.2017.08.022.

    Article  Google Scholar 

  22. FENG Xia-ting, XU Hong, QIU Shi-li, LI Shao-jun, YANG Cheng-xiang, GUO Hao-sen, CHENG Yuan, GAO Yao-hui. In situ observation of rock spalling in the deep tunnels of the China Jinping underground laboratory (2400 m depth) [J]. Rock Mechanics and Rock Engineering, 2018, 51(4): 1193–1213. DOI: https://doi.org/10.1007/s00603-017-1387-8.

    Article  Google Scholar 

  23. KONICEK P, SCHREIBER J. Heavy rockbursts due to longwall mining near protective Pillars: A case study [J]. International Journal of Mining Science and Technology, 2018, 28(5): 799–805. DOI: https://doi.org/10.1016/j.ijmst.2018.08.010.

    Article  Google Scholar 

  24. LI Xi-bing, FENG Fan, LI Di-yuan, DU Kun, RANJITH P G, ROSTAMI J. Failure characteristics of granite influenced by sample height-to-width ratios and intermediate principal stress under true-triaxial unloading conditions [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1321–1345. DOI: https://doi.org/10.1007/s00603-018-1414-4.

    Article  Google Scholar 

  25. SEPEHRI M, APEL D B, ADEEB S, LEVEILLE P, HALL R A. Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model [J]. Engineering Geology, 2020, 266: 105457. DOI: https://doi.org/10.1016/j.enggeo.2019.105457.

    Article  Google Scholar 

  26. ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, QIU Shi-li, WU Wen-ping. Rockmass damage development following two extremely intense rockbursts in deep tunnels at Jinping II hydropower station, southwestern China [J]. Bulletin of Engineering Geology and the Environment, 2013, 72(2): 237–247. DOI: https://doi.org/10.1007/s10064-013-0470-y.

    Article  Google Scholar 

  27. ZHOU Hui, MENG Fan-zhen, ZHANG Chuan-qing, HU Da-wei, YANG Fan-jie, LU Jing-jing. Analysis of rockburst mechanisms induced by structural planes in deep tunnels [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(4): 1435–1451. DOI: https://doi.org/10.1016/j.engfracmech.2018.10.010.

    Article  Google Scholar 

  28. CHALIVENDRA V B, HONG S, ARIAS I, KNAP J, ROSAKIS A, ORTIZ M. Experimental validation of large-scale simulations of dynamic fracture along weak planes [J]. International Journal of Impact Engineering, 2009, 36(7): 888–898. DOI: https://doi.org/10.1016/j.ijimpeng.2008.11.009.

    Article  MATH  Google Scholar 

  29. HUANG Feng, ZHU He-hua, XU Qian-wei, CAI Yong-chang, ZHUANG Xiao-ying. The effect of weak interlayer on the failure pattern of rock mass around tunnel — Scaled model tests and numerical analysis [J]. Tunnelling and Underground Space Technology, 2013, 35: 207–218. DOI: https://doi.org/10.1016/j.tust.2012.06.014.

    Article  Google Scholar 

  30. YANG Sheng-qi, YIN Peng-fei, ZHANG Yuan-chao, CHEN Miao, ZHOU Xiao-ping, JING Hong-wen, ZHANG Qiang-yong. Failure behavior and crack evolution mechanism of a non-persistent jointed rock mass containing a circular hole [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 101–121. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.017.

    Article  Google Scholar 

  31. CHEN Min-liang, JING Hong-wen, MA Xiu-jun, SU Hai-jian, DU Ming-rui, ZHU Tan-tan. Fracture evolution characteristics of sandstone containing double fissures and a single circular hole under uniaxial compression [J]. International Journal of Mining Science and Technology, 2017, 27(3): 499–505. DOI: https://doi.org/10.1016/j.ijmst.2017.03.027.

    Article  Google Scholar 

  32. LIU Xiang-ru, YANG Sheng-qi, HUANG Yan-hua, CHENG Jian-long. Experimental study on the strength and fracture mechanism of sandstone containing elliptical holes and fissures under uniaxial compression [J]. Engineering Fracture Mechanics, 2019, 205: 205–217. DOI: https://doi.org/10.1016/j.engfracmech.2018.11.028.

    Article  Google Scholar 

  33. YANG Yuezong, ZHANG Zhen-nan. Dynamic fracturing process of fissured rock under abrupt unloading condition: A numerical study [J]. Engineering Fracture Mechanics, 2020, 231: 107025. DOI: https://doi.org/10.1016/j.engfracmech.2020.107025.

    Article  Google Scholar 

  34. MANOUCHEHRIAN A, CAI M. Analysis of rockburst in tunnels subjected to static and dynamic loads [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1031–1040. DOI: https://doi.org/10.1016/j.jrmge.2017.07.001.

    Article  Google Scholar 

  35. MANOUCHEHRIAN A, CAI M. Numerical modeling of rockburst near fault zones in deep tunnels [J]. Tunnelling and Underground Space Technology, 2018, 80: 164–180. DOI: https://doi.org/10.1016/j.tust.2018.06.015.

    Article  Google Scholar 

  36. ELMO D, STEAD D, EBERHARDT E, VYAZMENSKY A. Applications of finite/discrete element modeling to rock engineering problems [J]. International Journal of Geomechanics, 2013, 13(5): 565–580. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000238.

    Article  Google Scholar 

  37. HAMDI P, STEAD D, ELMO D. Damage characterization during laboratory strength testing: a 3D-finite-discrete element approach [J]. Computers and Geotechnics, 2014, 60: 33–46. DOI: https://doi.org/10.1016/j.compgeo.2014.03.011.

    Article  Google Scholar 

  38. LI Xiang-yu, KIM E, WALTON G. A study of rock pillar behaviors in laboratory and in situ scales using combined finite-discrete element method models [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 118: 21–32. DOI: https://doi.org/10.1016/j.ijrmms.2019.03.030.

    Article  Google Scholar 

  39. YAN Cheng-zeng, ZHENG Hong, SUN Guan-hua, GE Xiu-run. Combined finite-discrete element method for simulation of hydraulic fracturing [J]. Rock Mechanics and Rock Engineering, 2016, 49(4): 1389–1410. DOI: https://doi.org/10.1007/s00603-015-0816-9.

    Article  Google Scholar 

  40. ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, QIU Shi-li, WU Wen-ping. Case histories of four extremely intense rockbursts in deep tunnels [J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275–288. DOI: https://doi.org/10.1007/s00603-011-0218-6.

    Article  Google Scholar 

  41. HAJIABDOLMAJID V, KAISER P K, MARTIN C D. Modelling brittle failure of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(6): 731–741. DOI: https://doi.org/10.1016/S1365-1609(02)00051-5.

    Article  Google Scholar 

  42. CAI M. Fracture initiation and propagation in a Brazilian disc with a plane interface: a numerical study [J]. Rock Mechanics and Rock Engineering, 2013, 46(2): 289–302. DOI: https://doi.org/10.1007/s00603-012-0331-1.

    Article  Google Scholar 

  43. CAI M. Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries: Insight from numerical modeling [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 763–772. DOI: https://doi.org/10.1016/j.ijrmms.2007.07.026.

    Article  Google Scholar 

  44. MITELMAN A, de ELMO D. Analysis of tunnel support design to withstand spalling induced by blasting [J]. Tunnelling and Underground Space Technology, 2016, 51: 354–361. DOI: https://doi.org/10.1016/j.tust.2015.10.006.

    Article  Google Scholar 

  45. ZHANG Z X. An empirical relation between mode I fracture toughness and the tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3): 401–406. DOI: https://doi.org/10.1016/S1365-1609(02)00032-1.

    Article  Google Scholar 

  46. LI Di-yuan, LI C C, LI Xi-bing. Influence of sample height-to-width ratios on failure mode for rectangular prism samples of hard rock loaded in uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2011, 44(3): 253–267. DOI: https://doi.org/10.1007/s00603-010-0127-0.

    Article  Google Scholar 

  47. EICHHUBL P, HOOKER J N, LAUBACH S E. Pure and shear-enhanced compaction bands in Aztec Sandstone [J]. Journal of Structural Geology, 2010, 32(12): 1873–1886. DOI: https://doi.org/10.1016/j.jsg.2010.02.004.

    Article  Google Scholar 

  48. MA X D, RUDNICKI J W, HAIMSON B C. Failure characteristics of two porous sandstones subjected to true triaxial stresses: Applied through a novel loading path [J]. Journal of Geophysical Research: Solid Earth, 2017, 122(4): 2525–2540. DOI: https://doi.org/10.1002/2016JB012979.

    Article  Google Scholar 

  49. PATERSON M S. Experimental deformation and faulting in wombeyan marble [J]. Geological Society of America Bulletin, 1958, 69(4): 465–476. DOI: https://doi.org/10.1130/0016-7606(1958)69[465:EDAFIW]2.0.CO;2.

    Article  Google Scholar 

  50. MOGI K. Experimental rock mechanics[M]. CRC Press, London, 2007.

    Google Scholar 

  51. HOEK E, BROWN E T. Practical estimates of rock mass strength [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1165–1186. DOI: https://doi.org/10.1016/S1365-1609(97)80069-X.

    Article  Google Scholar 

  52. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular Caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  53. SI Xue-feng, GONG Feng-qiang. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104347. DOI: https://doi.org/10.1016/j.ijrmms.2020.104347.

    Article  Google Scholar 

  54. JIANG Bang-you, GU Shi-tan, WANG Lian-guo, ZHANG Guang-chao, LI Wen-shuai. Strainburst process of marble in tunnel-excavation-induced stress path considering intermediate principal stress [J]. Journal of Central South University, 2019, 26(4): 984–999. DOI: https://doi.org/10.1007/s11771-019-4065-z.

    Article  Google Scholar 

  55. WONG R H C, TANG C A, CHAU K T, LIN P. Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression [J]. Engineering Fracture Mechanics, 2002, 69(17): 1853–1871. DOI: https://doi.org/10.1016/S0013-7944(02)00065-6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Shao-jie provided the concept and edited the draft of manuscript. FENG Fan performed the numerical research and wrote the first draft of the manuscript. WANG Ya-jun analyzed the numerical simulation results and helped to draft the revised manuscript. LI Di-yuan provided the numerical software and designed the modelling scheme. HUANG Wang-peng analyzed and processed the data. ZHAO Xing-dong and JIANG Ning conducted the literature review, and checked the language and format.

Corresponding author

Correspondence to Fan Feng  (冯帆).

Additional information

Conflict of interest

CHEN Shao-jie, FENG Fan, WANG Ya-jun, LI Di-yuan, HUANG Wang-peng, ZHAO Xing-dong, and JIANG Ning declare that they have no conflict of interest.

Foundation item: Projects(52004143, 51774194) supported by the National Natural Science Foundation of China; Project(2020M670781) supported by the China Postdoctoral Science Foundation; Project(SKLGDUEK2021) supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering, China; Project(U1806208) supported by the NSFC-Shandong Joint Fund, China; Project(2018GSF117023) supported by the Key Research and Development Program of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sj., Feng, F., Wang, Yj. et al. Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in-situ stress. J. Cent. South Univ. Technol. 27, 2864–2882 (2020). https://doi.org/10.1007/s11771-020-4515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4515-7

Key words

关键词

Navigation