Skip to main content
Log in

Dynamic disaster control of backfill mining under thick magmatic rock in one side goaf: A case study

一侧采空厚层岩浆岩条件下充填开采对动力灾害的控制:案例研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock (TMR), a three-dimensional numerical model of a panel of one side goaf in Yangliu coal mine with double-yield backfill material constitutive model was developed. The simulation results were then compared with field monitoring data. The dynamic disaster control effect of both caving and backfill mining was analyzed in three different aspects, i.e., displacement field, stress field and energy field. The results show that in comparison to the full caving mining method, the bearing capacity of the goaf after backfilling was enhanced, the backfill mining can effectively reduce the stress and energy accumulated in the coal/rock body, and the backfill mining eliminates the further moving space of TMR and prevents its sudden rupture. Before TMR fracture, the subsidence displacement of TMR was reduced by 65.3%, the front abutment stress of panel decreased by 9.4% on average and the high energy concentration zone around panel was also significantly reduced. Overall, the results of this study provide deeper insights into the control of dynamic disasters by backfill mining in mines.

摘要

为了研究充填开采对上覆厚层岩浆岩特殊地质开采条件下动力灾害的控制效果,建立了杨柳煤 矿工作面一侧采空条件下双屈服充填材料本构模型的三维数值模型,并将数值模拟结果与现场监测数 据进行了对比。从位移场、应力场和能量场三个方面分析了垮落开采法和充填开采法的动态灾害控制 效果。结果表明,与垮落开采法相比,充填后采空区的承载能力得到了提高,充填开采法能有效地降 低煤岩体中积聚的应力和能量,消除了厚层岩浆岩的进一步移动空间,防止了厚层岩浆岩的突然破断。 厚层岩浆岩断裂前,其沉降位移减少了65.3%,工作面前支承应力平均降低了9.4%,工作面周围的高 能量集中区也明显减少。总的来说,本研究的结果为矿山充填采矿动力灾害的控制提供了深入的见解。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

e :

Elastic part

p:

Plastic part

p s :

Plastic shear strain

p t :

Plastic tensile strain

p v :

Plastic volumetric strain

K c :

Tangential bulk moduli

G c :

Shear moduli

Φ :

Angle of internal friction

c :

Cohesion

σ t :

Tensile strength

p c :

Cap pressure

References

  1. BELEM T, BENZAAZOUA M. Design and application of underground mine paste backfill technology [J]. Geotechnical and Geological Engineering, 2008, 26(2): 147–174. DOI: https://doi.org/10.1007/s10706-007-9154-3.

    Article  Google Scholar 

  2. XUE Yi, RANJITH P G, DANG Fa-ning, LIU Jia, WANG Song-he, XIA Tong-qiang, GAO Ya-nan. Analysis of deformation, permeability and energy evolution characteristics of coal mass around borehole after excavation [J]. Natural Resources Research, 2020. DOI: https://doi.org/10.1007/s11053-020-09644-0.

  3. VILLALBA MATAMOROS M E, KUMRAL M. A value adding approach to hard-rock underground mining operations: Balancing orebody orientation and mining direction through meta-heuristic optimization [J]. Journal of Central South University, 2019, 26(11): 3126–3139. DOI: https://doi.org/10.1007/s11771-019-4241-1.

    Article  Google Scholar 

  4. XU Tao, YANG Tian-hong, CHEN Chong-feng, LIU Hong-lei, YU Qing-lei. Mining induced strata movement and roof behavior in underground coal mine [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2015, 1(3, 4): 79–89. DOI: https://doi.org/10.1007/s40948-015-0010-2.

    Article  Google Scholar 

  5. FU Teng-fei, XU Tao, HEAP M J, MEREDITH P G, MITCHELL T M. Mesoscopic time-dependent behavior of rocks based on three- dimensional discrete element grain-based model [J]. Computers and Geotechnics, 2020, 121. DOI: https://doi.org/10.1016/j.compgeo.2020.103472.

  6. SCOTT B, RANJITH P G, CHOI S K, KHANDELWAL M. Geological and geotechnical aspects of underground coal mining methods within Australia [J]. Environment Earth Science, 2010, 60(5): 1007–1019. DOI: https://doi.org/10.1007/s12665-009-0239-6.

    Article  Google Scholar 

  7. BOOTH C J. Confined-unconfined changes above longwall coal mining due to increases in fracture porosity [J]. Environmental & Engineering Geoscience, 2007, 13(4): 355–367. DOI: https://doi.org/10.2113/gseegeosci.13.4.355.

    Article  Google Scholar 

  8. XU Tao, FU Teng-fei, HEAP M J, MEREDITH P G, MITCHELL T M, BAUD P. Mesoscopic damage and fracturing of heterogeneous brittle rocks based on three-dimensional polycrystalline discrete element method [J]. Rock Mechanics and Rock Engineering. 2020. DOI: https://doi.org/10.1007/s00603-020-02223-y.

  9. JIANG Li-shuai, WU Quan-sen, WU Quan-lin, WANG Pu, XUE Yan-chao, KONG Peng, GONG Bin. Fracture failure analysis of hard and thick key layer and its dynamic response characteristics [J]. Engineering Failure Analysis, 2019, 98: 150–162. DOI: https://doi.org/10.1016/j.engfailanal.2019.01.008.

    Article  Google Scholar 

  10. REN Fu-qiang, ZHU Chun, HE Man-chao. Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst [J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 153–170. DOI: https://doi.org/10.1007/s00603-019-01897-3.

    Article  Google Scholar 

  11. XUE Yan-chao, WU Quan-sen, SUN De-quan. Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks [J]. Geomechanics and Engineering, 2020, 22(4): 349–359. DOI: https://doi.org/10.12989/gae.2020.22.4.349.

    Google Scholar 

  12. ZHOU Guang-lei, XU Tao, HEAP M J, MEREDITH P G, MITCHELL T M, SESNIC AS-Y, YUAN Yang. A three-dimensional numerical meso-approach to modeling time-independent deformation and fracturing of brittle rocks [J]. Computers and Geotechnics, 2020, 117. DOI: https://doi.org/10.1016/j.compgeo.2019.103274.

  13. SUN Wen-bin, XUE Yan-chao, SHAO Jian-li, ZHOU Fei. Application and research of grey correlation analysis to coal mine casualty accident [J]. Coal Technology, 2019, 38(3): 178–181. DOI: https://doi.org/10.13301/j.cnki.ct.2019.03.060.

    Google Scholar 

  14. VAKILI A, HEBBLEWHITE B K. A new cavability assessment criterion for longwall top coal caving [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(8): 1317–1329. DOI: https://doi.org/10.1016/j.ijrmms.2010.08.010.

    Article  Google Scholar 

  15. ZHOU Fei, SUN Wen-bin, SHAO Jian-li, KONG Ling-jun, GENG Xue-yu. Experimental study on nano silica modified cement base grouting reinforcement materials[J]. Geomechanics and Engineering, 2020, 20(1): 67–73. DOI:https://doi.org/10.12989/gae.2020.20.1.067.

    Google Scholar 

  16. QI Chong-chong, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025. DOI: https://doi.org/10.1016/j.mineng.2019.106025.

    Article  Google Scholar 

  17. YILMAZ T, ERCIKDI B, DEVECI H. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings [J]. Journal of Environmental Management, 2018, 222: 250–259. DOI: https://doi.org/10.1016/j.jenvman.2018.05.075.

    Article  Google Scholar 

  18. WANG Chang-xiang, SHEN Bao-tang, CHEN Jun-tao, TONG Wei-xin, JIANG Zhe, LIU Yin, LI Yang-yang. Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation [J]. Geomechanics and Engineering, 2020, 20(6): 485–495. DOI: https://doi.org/10.12989/gae.2020.20.6.485.

    Google Scholar 

  19. GOODRICH R R, AGAPITO J F T, POLLASTRO C, LAFRENTZ L, FLECK K. Long load transfer distances at the Deer Creek Mine [C]// 37th US Rock Mechanics Symposium (Vail Rocks 99). Leiden: A A Balkema Publishers, 1999: 517–523.

    Google Scholar 

  20. XUAN Da-yang, XU Jia-lin, FENG Jian-chao, ZHU Wei-bing. Disaster and evolvement law of mining-induced stress under extremely thick igneous rock [J]. Journal of China Coal Society, 2011, 36(8): 1252–7. DOI: https://doi.org/10.13225/j.cnki.jccs.2011.08.015. (in Chinese)

    Google Scholar 

  21. YAVUZ H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of longwall coal mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 193–205. DOI: https://doi.org/10.1016/S1365-1609(03)00082-0.

    Article  Google Scholar 

  22. ZHANG Ji-xiong, LI Bai-yi, ZHOU Nan, ZHANG Qiang. Application of solid backfilling to reduce hard-roof caving and longwall coal face burst potential [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 197–205. DOI: https://doi.org/10.1016/j.ijrmms.2016.07.025.

    Article  Google Scholar 

  23. GUO Guang-li, ZHU Xiao-jun, ZHA Jian-feng, WANG Qiang. Subsidence prediction method based on equivalent mining height theory for solid backfilling mining [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3302–3308. DOI: https://doi.org/10.1016/S1003-6326(14)63470-1.

    Article  Google Scholar 

  24. YAN Hao, ZHANG Ji-xiong, ZHOU Nan, ZHANG Sheng, DONG Xiang-jian. Shaft failure characteristics and the control effects of backfill body compression ratio at ultra-contiguous coal seams mining [J]. Environment Earth Science, 2018, 77(12). DOI: https://doi.org/10.1007/s12665-018-7641-x.

  25. ZHU Xiao-jun, GUO Guang-li, LIU Hui, YANG Xiao-yu. Surface subsidence prediction method of backfill-strip mining in coal mining [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(8): 6235–6348. DOI: https://doi.org/10.1007/s10064-019-01485-3.

    Article  Google Scholar 

  26. GHIRIAN A, FALL M. Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments [J]. Engineering Geology, 2014, 170: 11–23. DOI: https://doi.org/10.1016/j.enggeo.2013.12.004.

    Article  Google Scholar 

  27. CHEN Qiu-song, ZHANG Qin-li, FOURIE A, CHEN Xin, QI Chong-chong. Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism [J]. Construction and Building Materials, 2017, 154: 34–43. DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.142.

    Article  Google Scholar 

  28. LAN Wen-tao, WU Ai-xiang, YU Ping. Development of a new controlled low strength filling material from the activation of copper slag: Influencing factors and mechanism analysis [J]. Journal of Cleaner Production, 2020, 246. DOI: https://doi.org/10.1016/j.jclepro.2019.119060.

  29. GAUTAM B P, PANESAR D K, SHEIKH S A, VECCHIO F J. Effect of coarse aggregate grading on the ASR expansion and damage of concrete [J]. Cement and Concrete Research, 2017, 95: 75–83. DOI: https://doi.org/10.1016/j.cemconres.2017.02.022.

    Article  Google Scholar 

  30. LI Meng, ZHANG Ji-xiong, ZHOU Nan, HUANG Yan-li. Effect of particle size on the energy evolution of crushed waste rock in coal mines [J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1347–1354. DOI: https://doi.org/10.1007/s00603-016-1151-5.

    Article  Google Scholar 

  31. ALIREZA G, MAMADOU F. Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage [J]. International Journal of Mining Science and Technology, 2016, 26(5): 809–817. DOI: https://doi.org/10.1016/j.ijmst.2016.05.039.

    Article  Google Scholar 

  32. MASOUMI H, DOUGLAS K J, RUSSELL A R. A bounding surface plasticity model for intact rock exhibiting size-dependent behaviour [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 47–62. DOI: https://doi.org/10.1007/s00603-015-0744-8.

    Article  Google Scholar 

  33. XING Y, KULATILAKE P H S W, SANDBAK L A. Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine [J]. Engineering Geology, 2018, 238: 62–75. DOI: https://doi.org/10.1016/j.enggeo.2018.03.010.

    Article  Google Scholar 

  34. ITASCA. FLAC (Fast Lagrangian analysis of Continua), version 6.0 [M]. Minneapolis, MN, USA: Itasca Consulting Group Inc, 2017.

    Google Scholar 

  35. KONG Yu-fei, XU Ming, SONG Er-xiang. An elastic-viscoplastic double-yield-surface model for coarse-grained soils considering particle breakage [J]. Computers and Geotechnics, 2017, 85: 59–70. DOI: https://doi.org/10.1016/j.compgeo.2016.12.014.

    Article  Google Scholar 

  36. QIAN Ming-gao, SHI Ping-wu, XU Jia-lin. Ground pressure and strata control [M]. Beijing: China University of Mining and Technology Press, 2010. (in Chinese)

    Google Scholar 

  37. XU Jia-lin, QIAN Ming-gao, ZHU Wei-bing. Study on influences of primary key stratum on surface dynamic subsidence [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 787–791. (in Chinese)

    Google Scholar 

  38. CAO A Y, DOU L M, CAI Wu, GONG Si-yuan, LIU Sai, JING Guang-cheng. Case study of seismic hazard assessment in underground coal mining using passive tomography [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78: 1–9. DOI: https://doi.org/10.1016/j.ijrmms.2015.05.001.

    Article  Google Scholar 

  39. MAREK U. Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Weglowa SA [C]// International Conference on Mining Science and Technology. Amsterdam: Elsevier Science BV, 2009, 1(1): 54–59. DOI: https://doi.org/10.1016/j.proeps.2009.09.011.

    Google Scholar 

  40. ZHANG Ming-wei, SHIMADA H, SASAOKA T, MATSUI K, DOU Lin-ming. Seismic energy distribution and hazard assessment in underground coal mines using statistical energy analysis [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 192–200. DOI: https://doi.org/10.1016/j.ijrmms.2013.09.001.

    Article  Google Scholar 

  41. SI Xue-feng, GONG Feng-qiang. Strength-weakening effect and shear-tension failure mode transformation mechanism of rockburst for fine-grained granite under triaxial unloading compression [J]. International Journal of Rock Mechanics and Mining Science, 2020, 131: 104347. DOI: https://doi.org/10.1016/j.ijrmms.2020.104347.

    Article  Google Scholar 

  42. GONG Feng-qiang, SI Xue-feng, LI Xi-bing, WANG Shan-yong. Experimental investigation of strain rockburst in circular caverns under deep three-dimensional high-stress conditions [J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1459–1474. DOI: https://doi.org/10.1007/s00603-018-1660-5.

    Article  Google Scholar 

  43. XUE Yan-chao, SUN Wen-bin, WU Quan-sen. The influence of magmatic rock thickness on fracture and instability law of mining surrounding rock [J]. Geomechanics and Engineering, 2020, 20(6): 547–556. DOI: https://doi.org/10.12989/gae.2020.20.6.547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XU Tao led the project and expanded the manuscript. Initial draft, numerical modeling and analysis were carried out by XUE Yan-chao. YANG Tian-hong also led the project. WASANTHA P L P improved the language and provided valuable suggestions. FU Teng-fei edited the draft of manuscript. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Tao Xu  (徐涛).

Additional information

Conflict of interest

XUE Yan-chao, XU Tao, WASANTHA P L P, YANG Tian-hong and FU Teng-fei declare that they have no conflict of interest.

Foundation item: Project(2017YFC1503100) supported by the National Key Research and Development Program of China; Projects(51974062, 41672301, 51811530312) supported by the National Natural Science Foundation of China; Project(N180101028) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, Yc., Xu, T., Wasantha, P.L.P. et al. Dynamic disaster control of backfill mining under thick magmatic rock in one side goaf: A case study. J. Cent. South Univ. Technol. 27, 3103–3117 (2020). https://doi.org/10.1007/s11771-020-4532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4532-6

Key words

关键词

Navigation