Skip to main content
Log in

System reliability analysis of seismic pseudo-static stability of rock wedge based on nonlinear Barton—Bandis criterion

基于非线性B−B 准则的三维楔体地震拟静力可靠度分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the nonlinear Barton-Bandis (B–B) failure criterion, this study considers the system reliability of rock wedge stability under the pseudo-static seismic load. The failure probability (Pf) of the system is calculated based on the Monte–Carlo method when considering parameter correlation and variability. Parameter analysis and sensitivity analysis are carried out to explore the influence of parameters on reliability. The relationships among the failure probability, safety factor (Fs), and variation coefficient are explored, and then stability probability curves of the rock wedge under the pseudo-static seismic load are drawn. The results show that the parameter correlation of the B–B failure criterion has a significant influence on the failure probability, but correlation increases system reliability or decreases system reliability affected by other parameters. Under the pseudo-static seismic action, sliding on both planes is the main failure mode of wedge system. In addition, the parameters with relatively high sensitivity are two angles related to the joint dip. When the coefficient of variation is consistent, the probability of system failure is a function of the safety factor.

摘要

本文基于非线性Barton−Bandis(B-B)破坏准则, 对地震拟静力作用下三维楔体的系统可靠度展 开研究。基于蒙特卡洛算法考虑参数相关性与变异性计算系统可靠度, 将计算结果与SWEDGE 软件 计算结果对比, 验证该方法的准确性与适用性。通过开展参数分析讨论各参数变化对系统可靠度的影 响规律。探究失效概率、安全系数与变异系数三者相互关系, 并绘制地震荷载作用下岩质楔体的稳定 概率曲线。研究表明: B−B 破坏准则参数相关性对失效概率的影响较大, 但相关性对系统可靠度的增 加或减小效应受其他参数取值影响; 在地震力作用下, 沿两不连续面发生破坏的概率对系统失效概率 贡献最大, 另外三种破坏模式的失效概率对系统失效概率贡献相对较小; 随着地震拟静力方向的变化 各参数的敏感性系数均处于波动状态, 相对敏感性较高的参数是与节理面走向相关的参数θ1 和θ2; 系 统的失效概率是安全系数的大小与其变异系数的函数。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. GRAVANIS E, PANTELIDIS L, GRIFFITHS D V. An analytical solution in probabilistic rock slope stability assessment based on random fields [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 71: 19–24. DOI: https://doi.org/10.1016/j.ijrmms.2014.06.018.

    Article  Google Scholar 

  2. ZHANG Jia-hua, ZHANG Biao. Reliability analysis for seismic stability of tunnel faces in soft rock masses based on a 3D stochastic collapse model [J]. Journal of Central South University, 2019, 26(7): 1706–1718. DOI: https://doi.org/10.1007/s11771-019-4127-2.

    Article  Google Scholar 

  3. PARK H, WEST T R. Development of a probabilistic approach for rock wedge failure [J]. Engineering Geology, 2001, 59(3): 233–251. DOI: https://doi.org/10.1016/S0013-7952(00)00076-4.

    Article  Google Scholar 

  4. LI D Q, JIANG S H, CHEN Y F, ZHOU C B. System reliability analysis of rock slope stability involving correlated failure modes [J]. KSCE Journal of Civil Engineering, 2011, 15(8): 1349–1359. DOI: https://doi.org/10.1007/s12205-011-1250-5.

    Article  Google Scholar 

  5. CHENG H, ZHOU X. A novel displacement-based rigorous limit equilibrium method for three-dimensional landslide stability analysis [J]. Canadian Geotechnical Journal, 2015, 52(12): 2055–2066. DOI: https://doi.org/10.1139/cgj-2015-0050.

    Article  Google Scholar 

  6. FANG Hong-wei, CHEN Y, DENG Xiao-wei. A new slope optimization design based on limit curve method [J]. Journal of Central South University, 2019, 26(7): 1856–1862. DOI: https://doi.org/10.1007/s11771-019-4139-y.

    Article  Google Scholar 

  7. ZHOU X P, CHENG H. The long-term stability analysis of 3D creeping slopes using the displacement-based rigorous limit equilibrium method [J]. Engineering Geology, 2015, 195: 292–300. DOI: https://doi.org/10.1016/j.enggeo.2015.06.002.

    Article  Google Scholar 

  8. ZHAO Lian-heng, CHENG Xiao, LI De-jian, ZHANG Ying-bin. Influence of non-dimensional strength parameters on the seismic stability of cracked slopes [J]. Journal of Mountain Science, 2019, 16(1): 153–167. DOI: https://doi.org/10.1007/s11629-017-4753-9.

    Article  Google Scholar 

  9. LOW B K. Efficient probabilistic algorithm illustrated for a rock slope [J]. Rock Mechanics and Rock Engineering, 2008, 41(5): 715–734. DOI: https://doi.org/10.1007/s00603-007-0146-7.

    Article  Google Scholar 

  10. LOW B K. Reliability analysis of rock slopes involving correlated nonnormals [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(6): 922–935. DOI: https://doi.org/10.1016/j.ijrmms.2007.02.008.

    Article  Google Scholar 

  11. HUANG X C, ZHOU X P. Probabilistic assessment for slope using the generalized Chebyshev inequalities [J]. International Journal of Geomechanics, 2020, 20(4): 06020003. DOI:https://doi.org/10.1061/(asce)gm.1943-5622.0001638.

    Article  Google Scholar 

  12. HUANG X C, ZHOU X P. Reliability analysis of a large-scale landslide using SOED-based RSM [J]. Environmental Earth Sciences, 2017, 76(23): 794. DOI: https://doi.org/10.1007/s12665-017-7136-1.

    Article  Google Scholar 

  13. LI D Q, CHEN Y F, LU W B, ZHOU C B. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables [J]. Computers and Geotechnics, 2011, 38(1): 58–68. DOI: https://doi.org/10.1016/j.compgeo.2010.10.006.

    Article  Google Scholar 

  14. HUANG X C, ZHOU X P, MA W, NIU Y W, WANG Y T. Two-dimensional stability assessment of rock slopes based on random field [J]. International Journal of Geomechanics, 2017, 17(7): 04016155. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000858.

    Article  Google Scholar 

  15. LOW B K. Reliability analysis of rock wedges [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(6): 498–505. DOI: https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(498).

    Article  Google Scholar 

  16. LI D Q, ZHOU C B, LU W B, JIANG Q H. A system reliability approach for evaluating stability of rock wedges with correlated failure modes [J]. Computer and Geotechnics 2009, 36(8): 1298–1307. DOI: https://doi.org/10.1016/j.compgeo.2009.05.013.

    Article  Google Scholar 

  17. JOHARI A, LARI A M. System reliability analysis of rock wedge stability considering correlated failure modes using sequential compounding method [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 82: 61–70. DOI: https://doi.org/10.1016/j.ijrmms.2015.12.002.

    Article  Google Scholar 

  18. XU X, ZHOU X, HUANG X, XU L. Wedge-failure analysis of the seismic slope using the pseudodynamic method [J]. International Journal of Geomechanics, 2017, 17(12): 04017108. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001015.

    Article  Google Scholar 

  19. TIWARI G, LATHA G M. Reliability analysis of jointed rock slope considering uncertainty in peak and residual strength parameters [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 913–930. DOI: https://doi.org/10.1007/s10064-017-1141-1.

    Article  Google Scholar 

  20. NEKOUEI AM, AHANGARI K. Validation of Hoek-Brown failure criterion charts for rock slopes [J]. International Journal of Mining Science and Technolgy, 2013, 23(6): 805–808. DOI: https://doi.org/10.1016/j.ijmst.2013.10.004.

    Article  Google Scholar 

  21. ZHOU X P, HUANG X C. Reliability analysis of slopes using UD-based response surface methods combined with LASSO [J]. Engineering Geology, 2018, 233: 111–123. DOI: https://doi.org/10.1016/j.enggeo.2017.12.008

    Article  Google Scholar 

  22. LIN Y L, ZHAO L H, YANG T Y. YANG G L, CHEN X B. Investigation on seismic behavior of combined retaining structure with different rock shapes [J]. Structural Engineering and Mechanics, 2020, 73(5): 599–612. DOI: https://doi.org/10.12989/sem.2020.73.5.599.

    Google Scholar 

  23. AUSILIO E, CONTE E, DENTE G. Seismic stability analysis of reinforced slopes [J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 159–172. DOI: https://doi.org/10.1016/S0267-7261(00)00005-1.

    Article  Google Scholar 

  24. YANG Xiao-li, SUI Zhi-rong. Seismic failure mechanisms for loaded slopes with associated and nonassociated flow rules [J]. Journal of Central South University of Technology, 2008, 15(2): 276–279. DOI: https://doi.org/10.1007/s11771-008-0051-6.

    Article  Google Scholar 

  25. CHEN W F, LIU X L. Limit analysis in soil mechanics [M]. Elsevier, 2012.

  26. ZHAO L H, CHENG X, LI L, CHEN J Q, ZHANG Y B. Seismic displacement along a log-spiral failure surface with crack using rock Hoek-Brown failure criterion [J]. Soil Dynamics and Earthquake Engineering, 2017, 99: 74–85. DOI: https://doi.org/10.1016/j.soildyn.2017.04.019.

    Article  Google Scholar 

  27. ZHAO L H, CAO J Y, ZHANG Y B, LUO Q. Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion [J]. Geomech Eng 2015, 8(3): 391–414. DOI: https://doi.org/10.12989/gae.2015.8.3.391.

    Article  Google Scholar 

  28. MENG F, WONG L N Y, ZHOU H, YU J, CHENG G T. Shear rate effects on the post-peak shear Behaviour and acoustic emission characteristics of artificially split granite joints [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2155–2174. DOI: https://doi.org/10.1007/s00603-018-1722-8.

    Article  Google Scholar 

  29. HU Bo, YANG Sheng-qi, XU Peng. A nonlinear rheological damage model of hard rock [J]. Journal of Central South University, 2018, 25(7): 1665–1677. DOI: https://doi.org/10.1007/s11771-018-3858-9.

    Article  Google Scholar 

  30. ZHAO Lian-heng, LI Liang, YANG Feng, LUO Qiang, LIU Xiang. Upper bound analysis of slope stability with nonlinear failure criterion based on strength reduction technique [J]. Journal of Central South University of Technology, 2010, 17(4): 836–744. DOI: https://doi.org/10.1007/s11771-010-564-7.

    Article  Google Scholar 

  31. ZUO S, ZHAO L H, DENG D P, WANG Z B, ZHAO Z G. Reliability back analysis of landslide shear strength parameters based on a general nonlinear failure criterion [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 126: 104189. DOI: https://doi.org/10.1016/j.ijrmms.2019.104189.

    Article  Google Scholar 

  32. ZHAO L H, JIAO K F, ZUO S, YU C H, TANG G P. Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion [J]. Geomechanics and Engineering, 2020, 20(4): 287–297.

    Google Scholar 

  33. WANG J, ZHANG Y, WANG P. Post-peak roughness degradation model based on Barton-Bandis criterion for rock joint [C]//IOP Conference Series: Earth and Environmental Science. 2019, 304: 52–57. DOI: https://doi.org/10.1088/1755-1315/304/5/052057.

    Google Scholar 

  34. LUO Qiang, ZHAO Lian-heng, LI Liang, TAN Han-hua, LUO Wei. Stability analysis of anchored rock slope based on Barton-Bandis failure criterion [J]. Rock and Soil Mechanics, 2013, 34(5): 1351–1359. DOI: https://doi.org/10.16285/j.rsm.2013.05.004.(in Chinese)

    Google Scholar 

  35. NAGPAL A, BASHA B M. NAGPAL A, BASHA B M. Reliability analysis of anchored rock slopes against planar failure [C]//Proceedings of Indian Geotechnical Conference. Delhi, Indian, 2012.

  36. BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice [J]. Rock Mechanics and Rock Engineering, 1977, 10: 1–54. DOI: https://doi.org/10.1007/BF01261801.

    Article  Google Scholar 

  37. BARTON N. The shear strength of rock and rock joints [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(9): 255–279. DOI: https://doi.org/10.1016/0148-9062(76)90003-6.

    Article  Google Scholar 

  38. LIU Ming-wei, FU Hua, WU Jin-liang. Current situation of determination METHODS OF SHEAR strength parameters of rock-mass discontinuities and new thoughts [J]. Journal of Chongqing Jiaotong University, 2005, 24(5): 65–67. (in Chinese)

    Google Scholar 

  39. XIA C C, SUN Z G. Engineering rock mass joint mechanics [M]. Shanghai: Tongji University Press, 2002. (in Chinese)

    Google Scholar 

  40. MACEDO J, CANDIA G. Performance-based assessment of the Seismic Pseudo-static coefficient used in slope stability analysis [J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106109. DOI: https://doi.org/10.1016/j.soildyn.2020.106109.

    Article  Google Scholar 

  41. SIAD L. Seismic stability analysis of fractured rock slopes by yield design theory [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(3): 21–30. DOI: https://doi.org/10.1016/S0267-7261(02)00213-0.

    Article  Google Scholar 

  42. PAN Qiu-jing, QU Xing-ru, WANG Xiang. Probabilistic seismic stability of THREE-DIMENSIONAL SLOPES by pseudo-dynamic approach [J]. Journal of Central South University, 2019, 26(7): 1687–1695. DOI: https://doi.org/10.1007/s11771-019-4125-4.

    Article  Google Scholar 

  43. GOODMAN R E. Introduction to rock mechanics [M]. New York: Wiley, 1980.

    Google Scholar 

  44. WITTKE W. Coupling of stress-strain behavior and seepage flow [M]//Rock Mechanics Based on an Anisotropic Jointed Rock Model (AJRM). D-69451 Weinheim, Germany: Wiley-VCH Verlag GmbH, 2014: 165–179.

    Chapter  Google Scholar 

  45. TONON F, BERNARDINI A, MAMMINO A. Reliability analysis of rock mass response by means of random set theory [J]. Reliability Engineering & System Safety, 2000, 70(3): 263–282. DOI: https://doi.org/10.1016/S0951-8320(00)00059-4.

    Article  Google Scholar 

  46. HOEK E, BRAY J D. Rock slope engineering [M]. 3rd ed. London and New York: Taylor and Francis Group, 1981. Reprinted in 1999.

    Book  Google Scholar 

  47. LOW B K, EINSTEIN H H. Simplified reliability analysis for wedge mechanisms in rock slopes [C]//Proc 6th Int Symp Landslides. Rotterdam, the Netherlands: Balkema, 1992: 499–507.

    Google Scholar 

  48. WYLLIE D C, MAH C W. Rock slope engineering: Civil and mining [M]. 4th ed. New York: Spon Press, 2004.

    Google Scholar 

  49. JIMENEZ-RODRIGUEZ R, SITAR N. Rock wedge stability analysis using system reliability methods [J]. Rock Mechanics and Rock Engineering, 2007, 40(4): 419–427. DOI: https://doi.org/10.1007/s00603-005-0088-x.

    Article  Google Scholar 

  50. JIMENEZ-RODRIGUEZ R, SITAR N, CHACON J. System reliability approach to rock slope stability [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(6): 847–859. DOI: https://doi.org/10.1016/j.ijrmms.2005.11.011.

    Article  Google Scholar 

  51. HAMMAH R E, YACOUB T E, CURRAN J H. Probabilistic slope analysis with the finite element method [C]//Proc 41st US Symp Rock Mech, fourth US-Canada Rock Mech Symp. Asheville, North Carolina, USA, 2008.

  52. ZHAO L H, CHENG X, ZHANG Y B, LI L, LI D J. Stability analysis of seismic slopes with cracks [J]. Computers and geotechnics, 2016, 77: 77–90.

    Article  Google Scholar 

  53. ZHANG Guang, ZHU Wei-shen. Parameter sensitivity analysis and optimizing for test programs [J]. Rock and Soil Mechanics, 1993, 14(1): 51–58. (in Chinese)

    Google Scholar 

  54. THOFT-CHRISTENSEN P, BAKER M J. Structural reliability theory and its applications [M]. Berlin, Germany: Springer-Verlag, 1982.

    Book  MATH  Google Scholar 

  55. DUNCAN J M, WRIGHT S G, BRANDON T L. Soil strength and slope stability [M]. 2nd ed. New York: John Wiley and Sons, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHAO Lian-heng provided the concept and supplied financial support for the whole study. JIAO Kang-fu edited the draft of manuscript and completed the experiment. LI De-jian provided directional guidance. ZUO Shi edited the pictures and examined the manuscript.

Corresponding author

Correspondence to De-jian Li  (李得建).

Additional information

Conflict of interest

ZHAO Lian-heng, JIAO Kang-fu, LI De-jian and ZUO Shi declare that they have no conflict of interest.

Foundation item

Project(51878668) supported by the National Natural Science Foundation of China; Projects(2017-122-058, 2018-123-040) supported by the Guizhou Provincial Department of Transportation Foundation, China; Project([2018]2815) supported by the Guizhou Provincial Department of Science and Technology Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Lh., Jiao, Kf., Li, Dj. et al. System reliability analysis of seismic pseudo-static stability of rock wedge based on nonlinear Barton—Bandis criterion. J. Cent. South Univ. 27, 3450–3463 (2020). https://doi.org/10.1007/s11771-020-4558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4558-9

Key words

关键词

Navigation