Skip to main content
Log in

Determining representative elementary volume size of in-situ expansive soils subjected to drying-wetting cycles through field test

原位干湿循环作用下非扰动膨胀土表征单元体尺寸的测定

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil. The representative elementary volume (REV) defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media. In this study, direct shear tests of three different scales (30 cm2, 900 cm2, 1963 cm2) and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ. The REV size of expansive soil was investigated using the crack intensity factor (CIF) and soil cohesion. The results show that soil cohesion decreased with increasing sample area, and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil. As shrinkage cracks developed, the REV size of the soil gradually increased and plateaued after 3–5 cycles. Under the same drying-wetting cycle conditions, the REV size determined using soil cohesion (REV-C) is 1.75 to 2.97 times the REV size determined using CIF (REV-CIF). Under the influence of shrinkage cracks, the average CIF is positively correlated with the REV size determined using different maximum permissible errors, with the coefficient of correlation greater than 0.9. A method for determining the REV-C based on crack image analysis is proposed, and the REV-C of expansive soil in the study area under different exposure times is given.

摘要

膨胀土具有裂隙性, 反复胀缩裂隙的发展破坏了土体的连续性及均匀性, 使土体表现出明显的 各向异性, 依托连续介质理论定义的土体表征单元体(REV)难以满足实际要求. 针对不同次数现场原 位干湿循环作用下的原状土试样进行3 种不同尺寸(30 cm2, 900 cm2, 1963 cm2)的直接剪切试验及裂 隙图像分析, 从土体表面裂隙率(CIF)和黏聚力参数对膨胀土REV尺寸的影响进行研究. 结果表明, 未干湿循环时, 原生裂隙使土体黏聚力参数表现出非连续性, 试样尺寸越大, 土体测试黏聚力越小, 次生裂隙的发展进一步加剧了试样尺寸对测试黏聚力的影响; 土体REV尺寸随着胀缩裂隙的发展而增 大, 且其增长速率逐渐减小, 3~5 次循环后趋于稳定; 在同一循环条件下, 依托黏聚力参数确定的 REV尺寸(REV-C)约为依托裂隙率确定的REV尺寸(REV-CIF)的1.75~2.97 倍. CIF可作为表征土体裂隙 状况的基本指标, 在胀缩裂隙影响下, 膨胀土的CIF 均值与不同最大允许误差所确定的REV尺寸呈正 相关, 且相关系数均大于0.9. 本研究提出了一种基于裂隙图像确定裂隙膨胀土REV-C 的方法, 并给 出研究区域内膨胀土在不同暴露时间下直接剪切试验的REV尺寸大小.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BO H, HUI S. Shear strength characteristic of fissure plane in expansive soil [C]// Second International Conference on Geotechnical and Earthquake Engineering. Reston, VA, USA: American Society of Civil Engineers, 2013: 324–333. DOI:https://doi.org/10.1061/9780784413128.039.

    Google Scholar 

  2. WEIBULL W. A statistical theory of the strength of materials [C]// Proceedings of the Royal Swedish Institute of Engineering Research Stockholm, 1939: 115–145.

  3. LO K Y. The operational strength of fissured clays [J]. Géotechnique, 1970, 20(1): 57–74. DOI:https://doi.org/10.1680/geot.1970.20.1.57.

    Article  Google Scholar 

  4. BEAR J. Dynamics of fluids in porous media [M]. New York: American Elsevier, 1972.

    MATH  Google Scholar 

  5. LONG J C S, REMER J S, WILSON C R, WITHERSPOON P A. Porous media equivalents for networks of discontinuous fractures [J]. Water Resources Research, 1982, 18(3): 645–658. DOI:https://doi.org/10.1029/WR018i003p00645.

    Article  Google Scholar 

  6. CHEN R H, LEE C H, CHEN Chao-shi. Evaluation of transport of radioactive contaminant in fractured rock [J]. Environmental Geology, 2001, 41(3, 4): 440–450. DOI:https://doi.org/10.1007/s002540100410.

    Article  Google Scholar 

  7. WANG Zhe-chao, LI Wei, BI Li-ping, QIAO Li-ping, LIU Ri-cheng, LIU Jie. Estimation of the REV size and equivalent permeability coefficient of fractured rock masses with an emphasis on comparing the radial and unidirectional flow configurations [J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1457–1471. DOI:https://doi.org/10.1007/s00603-018-1422-4.

    Article  Google Scholar 

  8. DI Sheng-jie, XU Wei-ya, NING Yu, WANG Wei, WU Guan-ye. Macro-mechanical properties of columnar jointed basaltic rock masses [J]. Journal of Central South University of Technology, 2011, 18(6): 2143–2149. DOI:https://doi.org/10.1007/s11771-011-0955-4.

    Article  Google Scholar 

  9. XIA Lu, ZHENG Yin-he, YU Qing-chun. Estimation of the REV size for blockiness of fractured rock masses [J]. Computers and Geotechnics, 2016, 76: 83–92. DOI:https://doi.org/10.1016/j.compgeo.2016.02.016.

    Article  Google Scholar 

  10. LI Yan-yan, CHEN Jian-ping, SHANG Yan-jun. Determination of the geometrical REV based on fracture connectivity: A case study of an underground excavation at the Songta dam site, China [J]. Bulletin of Engineering Geology and the Environment, 2018, 77(4): 1599–1606. DOI:https://doi.org/10.1007/s10064-017-1063-y.

    Article  Google Scholar 

  11. SEMERARO F, FERGUSON J C, ACIN M, PANERAI F, MANSOUR N N. Anisotropic analysis of fibrous and woven materials part 2: Computation of effective conductivity [J]. Computational Materials Science, 2021, 186: 109956. DOI:https://doi.org/10.1016/j.commatsci.2020.109956.

    Article  Google Scholar 

  12. ZHANG Jing, LIU Ri-cheng, YU Li-yuan, JING Hong-wen, YIN Qian. Investigations on representative elementary volume and directional permeability of fractal-based fracture networks using polygon sub-models [J]. Fractals, 2020, 28(5): 2050085. DOI:https://doi.org/10.1142/s0218348x20500851.

    Article  Google Scholar 

  13. SCHULTZ R A. Relative scale and the strength and deformability of rock masses [J]. Journal of Structural Geology, 1996, 18(9): 1139–1149. DOI:https://doi.org/10.1016/0191-8141(96)00045-4.

    Article  Google Scholar 

  14. KULATILAKE P H S W, PANDA B B. Effect of block size and joint geometry on jointed rock hydraulics and REV [J]. Journal of Engineering Mechanics, 2000, 126(8): 850–858. DOI:https://doi.org/10.1061/(asce)0733-9399(2000)126:8(850).

    Article  Google Scholar 

  15. WANG M, KULATILAKE P H S W, UM J, NARVAIZ J. Estimation of REV size and three-dimensional hydraulic conductivity tensor for a fractured rock mass through a single well packer test and discrete fracture fluid flow modeling [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(7): 887–904. DOI:https://doi.org/10.1016/s1365-1609(02)00067-9.

    Article  Google Scholar 

  16. WANG Pei-tao, REN Fen-hua, MIAO Sheng-jun, CAI Mei-feng, YANG Tian-hong. Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests [J]. Engineering Geology, 2017, 225: 29–41. DOI:https://doi.org/10.1016/j.enggeo.2017.03.004.

    Article  Google Scholar 

  17. MIN K B, JING Lan-ru, STEPHANSSON O. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: Method and application to the field data from Sellafield, UK [J]. Hydrogeology Journal, 2004, 12(5): 497–510. DOI:https://doi.org/10.1007/s10040-004-0331-7.

    Article  Google Scholar 

  18. LI J H, ZHANG L M. Geometric parameters and REV of a crack network in soil [J]. Computers and Geotechnics, 2010, 37(4): 466–475. DOI:https://doi.org/10.1016/j.compgeo.2010.01.006.

    Article  Google Scholar 

  19. LI J H, ZHANG L M, WANG Y, FREDLUND D G. Permeability tensor and representative elementary volume of saturated cracked soil [J]. Canadian Geotechnical Journal, 2009, 46(8): 928–942. DOI:https://doi.org/10.1139/t09-037.

    Article  Google Scholar 

  20. WANG Yuan, FENG Di, CHEN Shang-xing, WU Hao-chen. Estimation of cracked soil’s representative elementary volume based on fractal dimension [J]. Rock and Soil Mechanics, 2013, 34(10): 2774–2780. DOI:https://doi.org/10.16285/j.rsm.2013.10.006.

    Google Scholar 

  21. LI Guo-wei, LI Ya-shuai, YUAN Jun-ping, WU Jian-tao, CAO Xue-shan, WU Shao-fu. Crack development rule of expensive soil and its influence factors in river slope of project of leasing water from yangtze to huai river [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(12): 154–161.

    Google Scholar 

  22. PRC Ministry of Water Resources. Specification of soil test (SL 237-1999) [M]. Beijing: China Water and Power Press, 1999. (in Chinese)

    Google Scholar 

  23. LI Xiong-wei, WANG Yong, YU Jing-wei, WANG Yan-li. Unsaturated expansive soil fissure characteristics combined with engineering behaviors [J]. Journal of Central South University, 2012, 19(12): 3564–3571. DOI:https://doi.org/10.1007/s11771-012-1444-0.

    Article  Google Scholar 

  24. LU Yang, LIU Si-hong, WENG Li-ping, WANG Liu-jiang, LI Zhuo, XU Lei. Fractal analysis of cracking in a clayey soil under freeze-thaw cycles [J]. Engineering Geology, 2016, 208: 93–99. DOI:https://doi.org/10.1016/j.enggeo.2016.04.023.

    Article  Google Scholar 

  25. AMENUVOR A C, LI Guo-wei, WU Jian-tao, HOU Yu-zhou, CHEN Wei. An image-based method for quick measurement of the soil shrinkage characteristics curve of soil slurry [J]. Geoderma, 2020, 363: 114165. DOI:https://doi.org/10.1016/j.geoderma.2019.114165.

    Article  Google Scholar 

  26. ATIQUE A, SANCHEZ M. Analysis of cracking behavior of drying soil [C]// 2nd International Conference on Environmental Science and Technology IPCBEE. Singapore, 2011, 6: 66–70. DOI:https://doi.org/10.1063/1.90388.

    Google Scholar 

  27. SONG Wei-kang, CUI Yu-jun. Modelling of water evaporation from cracked clayey soil [J]. Engineering Geology, 2020, 266: 105465. DOI:https://doi.org/10.1016/j.enggeo.2019.105465.

    Article  Google Scholar 

  28. MILLER C J, MI Hong, YESILLER N. Experimental analysis of desiccation crack propagation in clay liners1 [J]. Journal of the American Water Resources Association, 1998, 34(3): 677–686. DOI:https://doi.org/10.1111/j.1752-1688.1998.tb00964.x.

    Article  Google Scholar 

  29. KRISNANTO S, RAHARDJO H, FREDLUND D G, LEONG E C. Water content of soil matrix during lateral water flow through cracked soil [J]. Engineering Geology, 2016, 210: 168–179. DOI:https://doi.org/10.1016/j.enggeo.2016.06.012.

    Article  Google Scholar 

  30. GARGA V K. Effect of sample size on shear strength of basaltic residual soils [J]. Canadian Geotechnical Journal, 1988, 25(3): 478–487. DOI:https://doi.org/10.1139/t88-053.

    Article  Google Scholar 

  31. HUANG Hao-yong, CHENG Yuan-fang, ZHAO Wei, CHENG Chong, DENG Wen-biao. Study of the effect of borehole size on wellbore stability [J]. Applied Mechanics and Materials, 2014, 574: 214–218. DOI:https://doi.org/10.4028/u]www.scientific.net/amm.574.214.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-tao Wu  (吴建涛).

Additional information

Foundation item

Project(41472240) supported by the National Natural Science Foundation of China; Projects(2015B25514, 2015B17214) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, Gw., Hou, Yz. et al. Determining representative elementary volume size of in-situ expansive soils subjected to drying-wetting cycles through field test. J. Cent. South Univ. 28, 3246–3259 (2021). https://doi.org/10.1007/s11771-021-4820-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-021-4820-9

Key words

关键词

Navigation