Skip to main content
Log in

A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression

化学腐蚀作用后含单裂隙类岩石材料单轴压缩损伤本构模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To describe the deformation and strength characteristics of the corroded rock-like specimens containing a single crack under uniaxial compression, a damage constitutive model combining hydro-chemical damage with coupling damage of micro-flaws and macro-cracks is proposed. Firstly, based on phenomenological theory, the damage variable of the rock-like specimens subjected to water environment erosion and chemical corrosion is obtained. Secondly, a coupled damage variable for cracked rock-like specimens is derived based on the Lemaitre strain equivalence hypothesis, which combines the Weibull statistical damage model for micro-flaws and the fracture mechanics model for a macro single crack. Then, considering the residual strength characteristics of the rock-like materials, the damage variable is modified by introducing the correction coefficient, and the damage constitutive model of the corroded rock-like specimens with a single crack under uniaxial compression is established. The model is verified by comparing the experimental stress — strain curves, and the results are in good agreement with those provided in the literature. Finally, the correction coefficient of the damage variable proposed in this paper is discussed. The damage constitutive model developed in this paper provides an effective method to describe the stress — strain relationship and residual strength characteristics of the corroded rock-like specimens with a single crack under uniaxial compression.

摘要

为了描述腐蚀后含单裂隙类岩石材料在单轴压缩作用下的变形和强度特性, 提出了一种水化学 损伤与微裂纹和宏观单裂隙耦合损伤相结合的损伤本构模型。首先, 基于唯象理论, 得到了类岩石试 件在水环境侵蚀和化学腐蚀共同作用下的损伤变量。其次, 基于Lemaitre 应变等价性假设, 结合微裂 纹的Weibull 分布统计损伤模型和宏观单裂隙的断裂力学模型, 推导了含单裂隙类岩石试件的耦合损伤 变量。然后, 考虑类岩石材料的残余强度特性, 通过引入修正系数对损伤变量进行了修正, 建立了单 轴压缩作用下含单裂隙类岩石试件的损伤本构模型。通过由试验获得的应力-应变曲线对模型的有效性 进行了对比和验证, 结果表明, 理论模型计算得到的应力-应变曲线与文献中的试验结果吻合较好。最 后, 对本文所提出的损伤变量修正系数进行了讨论。本文建立的损伤本构模型为描述含单裂隙腐蚀类 岩石材料在单轴压缩作用下的应力-应变关系和残余强度特征提供了一种有效的理论计算方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAI Bin, ZHU Ru-kai, WU Song-tao, et al. Multi-scale method of nano (micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin [J]. Petroleum Exploration and Development, 2013, 40(3): 354–358. DOI: https://doi.org/10.1016/S1876-3804(13)60042-7.

    Article  Google Scholar 

  2. QIAO Li-ping, WANG Zhe-chao, HUANG An-da. Alteration of mesoscopic properties and mechanical behavior of sandstone due to hydro-physical and hydro-chemical effects [J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 255–267. DOI: https://doi.org/10.1007/s00603-016-1111-0.

    Article  Google Scholar 

  3. GUO Qi-feng, PAN Ji-liang, WANG Min, et al. Corrosive environment assessment and corrosion-induced rockbolt failure analysis in a costal underground mine [J]. International Journal of Corrosion, 2019: 1–9. DOI: https://doi.org/10.1155/2019/2105842.

  4. NOIRIEL C, RENARD F, DOAN M L, et al. Intense fracturing and fracture sealing induced by mineral growth in porous rocks [J]. Chemical Geology, 2010, 269(3, 4): 197–209. DOI: https://doi.org/10.1016/j.chemgeo.2009.09.018.

    Article  Google Scholar 

  5. MIAO Sheng-jun, CAI Mei-feng, GUO Qi-feng, et al. Damage effects and mechanisms in granite treated with acidic chemical solutions [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 77–86. DOI: https://doi.org/10.1016/jijrmms.2016.07.002.

    Article  Google Scholar 

  6. SHEN Lin-fang, FENG Xia-ting, PAN Peng-zhi, et al. Experimental research on mechano-hydro-chemical coupling of granite with single fracture [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7): 1379 -1388. DOI: CNKI:SUN:YSLX.0.2010-07-013. (in Chinese)

    Google Scholar 

  7. LU Zu-de, DING Wu-xiu, FENG Xia-ting, et al. Experimental study on mechano-hydro-chemical coupling process in cracked rocks [J]. Chinese Journal of rock mechanics and Engineering, 2008, 27(4): 796–804. DOI: CNKI:SUN:YSLX.0.2008-04-022. (in Chinese)

    Google Scholar 

  8. SINGH M, RAO K S. Empirical methods to estimate the strength of jointed rock masses [J]. Engineering Geology, 2005, 77(1, 2): 127–137. DOI: https://doi.org/10.1016/j.enggeo.2004.09.001.

    Article  Google Scholar 

  9. YAN Ze-lin, DAI Feng, LIU Yi, et al. Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(10): 5535–5552. DOI: https://doi.org/10.1007/s10064-020-01914-8.

    Article  Google Scholar 

  10. YAN Ze-lin, DAI Feng, LIU Yi, et al. Dynamic strength and cracking behaviors of single-flawed rock subjected to coupled static–dynamic compression [J]. Rock Mechanics and Rock Engineering, 2020, 53: 4289–4298. DOI: https://doi.org/10.1007/s00603-020-02165-5.

    Article  Google Scholar 

  11. YANG S Q, YANG D S, JING H W, et al. An experimental study of the fracture coalescence behaviour of brittle sandstone specimens containing three fissures [J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 563–582. DOI: https://doi.org/10.1007/s00603-011-0206-x.

    Article  Google Scholar 

  12. PAN Ji-liang, WU Xu, GUO Qi-feng, et al. Uniaxial experimental study of the deformation behavior and energy evolution of conjugate jointed rock based on AE and DIC methods [J]. Advances in Civil Engineering, 2020: 1–16. DOI: https://doi.org/10.1155/2020/8850250.

  13. ZHOU X P, BI J, QIAN Q H. Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws [J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 1097–1114. DOI: https://doi.org/10.1007/s00603-014-0627-4.

    Article  Google Scholar 

  14. WONG R H C, CHAU K T. Crack coalescence in a rock-like material containing two cracks [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 147–164. DOI: https://doi.org/10.1016/S0148-9062(97)00303-3.

    Article  Google Scholar 

  15. WONG R H C, CHAU K T, TANG C A, et al. Analysis of crack coalescence in rock-like materials containing three flaws—part I: Experimental approach [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 909–924. DOI: https://doi.org/10.1016/S1365-1609(01)00064-8.

    Article  Google Scholar 

  16. CAO Ping, LIU Tao-ying, PU Cheng-zhi, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression [J]. Engineering Geology, 2015, 187: 113–121. DOI: https://doi.org/10.1016/j.enggeo.2014.12.010.

    Article  Google Scholar 

  17. LIU Yi, DAI Feng, FAN Peng-xian, et al. Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1453–1471. DOI: https://doi.org/10.1007/s00603-017-1190-6.

    Article  Google Scholar 

  18. CAO Ri-hong, CAO Ping, LIN Hang, et al. Mechanical behavior of brittle rock-like specimens with pre-existing fissures under uniaxial loading: Experimental studies and particle mechanics approach [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 763–783. DOI: https://doi.org/10.1007/s00603-015-0779-x.

    Article  Google Scholar 

  19. FENG Xia-ting, CHEN Si-li, ZHOU Hui. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 181 -192. DOI: https://doi.org/10.1016/S1365-1609(03)00059-5.

    Article  Google Scholar 

  20. LI Ning, ZHU Yun-ming, SU Bo, et al. A chemical damage model of sandstone in acid solution [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(2): 243–249. DOI: https://doi.org/10.1016/S1365-1609(02)00132-6.

    Article  Google Scholar 

  21. MIAO Sheng-jun, WANG Hui, CAI Mei-feng, et al. Damage constitutive model and variables of cracked rock in a hydrochemical environment [J]. Arabian Journal of Geosciences, 2018, 11(2): 1–14. DOI: https://doi.org/10.1007/s12517-017-3373-6.

    Article  Google Scholar 

  22. LIU Yi, DAI Feng. A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 289–301. DOI: https://doi.org/10.1016/j.ijrmms.2018.01.046.

    Article  Google Scholar 

  23. HAN Tie-lin, WANG Xian-feng, LI Dong-feng, et al. Damage and degradation mechanism for single intermittent cracked mortar specimens under a combination of chemical solutions and dry-wet cycles [J]. Construction and Building Materials, 2019, 213: 567–581. DOI: https://doi.org/10.1016/j.conbuildmat.2019.04.085.

    Article  Google Scholar 

  24. PAN Ji-liang, LI Peng, XI Xun, et al. Research progress on corrosion durability of anchorage structures in underground engineering [J]. Journal of Harbin Institute of Technology, 2019, 51(9): 1–13. DOI: CNKI:SUN:HEBX.0.2019-09-001. (in Chinese)

    Google Scholar 

  25. PAN Ji-liang, REN Fen-hua, CAI Mei-feng. Effect of joint density on rockburst proneness of the elastic-brittle-plastic rock mass [J]. Shock and Vibration, 2021: 1–9. DOI: https://doi.org/10.1155/2021/5574325.

  26. WEIBULL W. A statistical distribution function of wide applicability [J]. Journal of Applied Mechanics, 1951, 18(3): 293–297. DOI: https://doi.org/10.1115/1.4010337.

    Article  Google Scholar 

  27. CAO Rui-lang, HE Shao-hui, WEI Jing, et al. Study of modified statistical damage softening constitutive model for rock considering residual strength [J]. Rock and Soil Mechanics, 2013, 34(6): 1652–1660. DOI: https://doi.org/10.16285/j.rsm.2013.06.018.

    Google Scholar 

  28. XU Xiao-li, KARAKUS M, GAO Feng, et al. Thermal damage constitutive model for rock considering damage threshold and residual strength [J]. Journal of Central South University, 2018, 25(10): 2523–2536. DOI: https://doi.org/10.1007/s11771-018-3933-2.

    Article  Google Scholar 

  29. PAN Ji-liang, GAO Zhao-ning, REN Fen-hua. Effect of strength criteria on surrounding rock of circular roadway considering strain softening and dilatancy [J]. Journal of China Coal Society, 2018, 43(12): 3293–3301. DOI: https://doi.org/10.13225/j.cnki.jccs.2018.0195. (in Chinese)

    Google Scholar 

  30. LIU H Y, SU T M. A dynamic damage constitutive model for a rock mass with non-persistent joints under uniaxial compression [J]. Mechanics Research Communications, 2016, 77: 12–20. DOI: https://doi.org/10.1016/j.mechrescom.2016.08.006.

    Article  Google Scholar 

  31. LI N, CHEN W, ZHANG P, et al. The mechanical properties and a fatigue-damage model for jointed rock masses subjected to dynamic cyclical loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(7): 1071–1079. DOI: https://doi.org/10.1016/S1365-1609(01)00058-2.

    Article  Google Scholar 

  32. YAN Ze-lin, DAI Feng, LIU Yi, et al. Numerical assessment of the rate-dependent cracking behaviours of single-flawed rocks in split Hopkinson pressure bar tests [J]. Engineering Fracture Mechanics, 2021, 247: 107656. DOI: https://doi.org/10.1016/j.engfracmech.2021.107656.

    Article  Google Scholar 

  33. LEE S, RAVICHANDRAN G. Crack initiation in brittle solids under multiaxial compression [J]. Engineering Fracture Mechanics, 2003, 70(13): 1645–1658. DOI: https://doi.org/10.1016/S0013-7944(02)00203-5.

    Article  Google Scholar 

  34. LEMAITRE J. A course on damage mechanics [M]. Berlin: Springer Science & Business Media, 2012. DOI: https://doi.org/10.1007/978-3-662-02761-5.

    MATH  Google Scholar 

Download references

Funding

Project(FRF-IDRY-20-013) supported by the Fundamental Research Funds for the Central Universities, China; Projects (51974014, 52074020) supported by the National Natural Science Foundation of China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-feng Guo  (郭奇峰).

Additional information

Contributors

PAN Ji-liang provided the concept and edited the draft of manuscript. PAN Ji-liang and LI Peng conducted the literature review and wrote the first draft of the manuscript. CAI Mei-feng and GUO Qi-feng edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

PAN Ji-liang, CAI Mei-feng, LI Peng, and GUO Qi-feng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Jl., Cai, Mf., Li, P. et al. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J. Cent. South Univ. 29, 486–498 (2022). https://doi.org/10.1007/s11771-022-4949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4949-1

Key words

关键词

Navigation