Skip to main content
Log in

Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Humic acid (HA) was impregnated onto powdered activated carbon to improve its Cu(II) adsorption capability. The optimum pH value for Cu(II) removal was 6. The maximum adsorption capacity of HAimpregnated activated carbon was up to 5.98 mg·g−1, which is five times the capacity of virgin activated carbon. The adsorption processes were rapid and accompanied by changes in pH. In using a linear method, it was determined that the equilibrium experimental data were better represented by the Langmuir isotherm than by the Freundlich isotherm. Surface charges and surface functional groups were studied through zeta potential and FTIR measurements to explain the mechanism behind the humicacid modification that enhanced the Cu(II) adsorption capacity of activated carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 1988, 333(6169): 134–139

    Article  CAS  Google Scholar 

  2. Lacour S, Bollinger J C, Serpaud B, Chantron P, Arcos R. Removal of heavy metals in industrial wastewaters by ion-exchanger grafted textiles. Analytica Chimica Acta, 2001, 428(1): 121–132

    Article  CAS  Google Scholar 

  3. Vaca Mier M, López Callejas R, Gehr R, Jiménez Cisneros B E, Alvarez P J J. Heavy metal removal with Mexican clinoptilolite. Water Research, 2001, 35(2): 373–378

    Article  CAS  Google Scholar 

  4. Dean J G, Bosqui F L, Lanouette K H. Heavy metals in/from wastewater. Environmental Science & Technology, 1972, 6(6): 512–518

    Article  Google Scholar 

  5. Atkinson B W, Bux F, Kasan H C. Waste activated sludge remediation of metal-plating effluents. Water SA, 1998, 24(4): 355–359

    CAS  Google Scholar 

  6. Park D, Yun Y S, Ahn C K, Park J M. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass. Chemosphere, 2007, 66(5): 939–946

    Article  CAS  Google Scholar 

  7. Aydiner C, Bayramoglu M, Kara S, Keskinler B, Ince O. Nickel removal from waters using surfactant-enhanced hybrid PAC/MF process. I. The influence of system-component variables. Industrial & Engineering Chemistry Research, 2006, 45(11): 3926–3933

    Article  CAS  Google Scholar 

  8. Matsuura T. Progress in membrane science and technology for seawater desalination-a review. Desalination, 2001, 134(1–3): 47–54

    Article  CAS  Google Scholar 

  9. Üçer A, Uyanik A, Aygun S F. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobilised activated carbon. Separation and Purification Technology, 2006, 47(3): 113–118

    Article  Google Scholar 

  10. Jaramillo J, Gómez-Serrano V, Alvarez P M. Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones. Journal of Hazardous Materials, 2009, 161(2–3): 670–676

    Article  CAS  Google Scholar 

  11. Ahn C K, Park D, Woo S H, Park J M. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants. Journal of Hazardous Materials, 2009, 164(2–3): 1130–1136

    Article  CAS  Google Scholar 

  12. Issabayeva G, Aroua M K, Sulaiman N M N. Removal of lead from aqueous solutions on palm shell activated carbon. Bioresource Technology, 2006, 97(18): 2350–2355

    Article  CAS  Google Scholar 

  13. Chen J P, Wu S. Simultaneous adsorption of copper ions and humic acid onto an activated carbon. Journal of Colloid and Interface Science, 2004, 280(2): 334–342

    Article  CAS  Google Scholar 

  14. Sparks D L. Environmental Soil Chemistry. San Diego: Academic Press, 1995

    Google Scholar 

  15. Wall N A, Choppin G R. Humic acids coagulation: influence of divalent cations. Applied Geochemistry, 2003, 18(10): 1,573–1,582

    Article  CAS  Google Scholar 

  16. Keirsse H, VanHoof F, Janssens J, Buekens A G. Adsorption of humic substances on activated carbon prepared from locally available waste materials. In: Proceedings of the 5th International Conference Chemistry for Protection of the Environment, Leuven, Belgium, 1985

    Google Scholar 

  17. Liu J F, Zhao Z S, Jiang G B. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environmental Science & Technology, 2008, 42(18): 6949–6954

    Article  CAS  Google Scholar 

  18. Yuan W, Zydney A L. Humic acid fouling during ultrafiltration. Environmental Science & Technology, 2000, 34(23): 5043–5050

    Article  CAS  Google Scholar 

  19. Bai R B, Zhang X. Polypyrrole-coated granules for humic acid removal. Journal of Colloid and Interface Science, 2001, 243(1): 52–60

    Article  CAS  Google Scholar 

  20. Schmitt D, Saravia F, Frimmel F H, Schuessler W. NOM-facilitated transport of metal ions in aquifers: importance of complexdissociation kinetics and colloid formation. Water Research, 2003, 37(15): 3541–3550

    Article  CAS  Google Scholar 

  21. Faur-Brasquet C, Reddad Z, Kadirvelu K, Le Cloirec P. Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Applied Surface Science, 2002, 196 (1–4): 356–365

    Article  CAS  Google Scholar 

  22. Wu C H, Lin C F, Ma H W, Hsi T Q. Effect of fulvic acid on the sorption of Cu and Pb onto gamma-Al2O3. Water Research, 2003, 37(4): 743–752

    Article  CAS  Google Scholar 

  23. Üçer A, Uyanik A, Cay S, Ozkan Y. Immobilisation of tannic acid onto activated carbon to improve Fe(III) adsorption. Separation and Purification Technology, 2005, 44(1): 11–17

    Article  Google Scholar 

  24. Machida M, Aikawa M, Tatsumoto H. Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations. Journal of Hazardous Materials, 2005, 120(1–3): 271–275

    Article  CAS  Google Scholar 

  25. Acar F N, Eren Z. Removal of Cu(II) ions by activated poplar sawdust (Samsun clone) from aqueous solutions. Journal of Hazardous Materials, 2006, 137(2): 909–914

    Article  CAS  Google Scholar 

  26. Özçimen D, Ersoy-Meriçboyu A. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons. Journal of Hazardous Materials, 2009, 168(2–3): 1118–1125

    Article  Google Scholar 

  27. Rangel-Mendez J R, Streat M. Adsorption of cadmium by activated carbon cloth: influence of surface oxidation and solution pH. Water Research, 2002, 36(5): 1244–1252

    Article  CAS  Google Scholar 

  28. Webi T W, Chakravorti R K. Pore and solid diffusion models for fixed bed adsorbers. Am. Inst. Chem. Eng. J., 1974, 20(2): 228–238

    Article  Google Scholar 

  29. Senthilkumaar S, Kalaamani P, Porkodi K, Varadarajan P R, Subburaam C V. Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 2006, 97(14): 1618–1625

    Article  CAS  Google Scholar 

  30. Yen T F. Environmental Chemistry: Chemical Principles for Environmental Processes. New Jersey: Prentice Hall PTR, 1999

    Google Scholar 

  31. Hankins N P, Lu N, Hilal N. Enhanced removal of heavy metal ions bound to humic acid by polyelectrolyte flocculation. Separation and Purification Technology, 2006, 51(1): 48–56

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suping Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Feng, S., Zhang, N. et al. Removal of Cu(II) ions from aqueous solution by activated carbon impregnated with humic acid. Front. Environ. Sci. Eng. 8, 329–336 (2014). https://doi.org/10.1007/s11783-013-0553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0553-9

Keywords

Navigation