Skip to main content
Log in

Visual tracking based on the sparse representation of the PCA subspace

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We construct a collaborative model of the sparse representation and the subspace representation. First, we represent the tracking target in the principle component analysis (PCA) subspace, and then we employ an L 1 regularization to restrict the sparsity of the residual term, an L 2 regularization term to restrict the sparsity of the representation coefficients, and an L 2 norm to restrict the distance between the reconstruction and the target. Then we implement the algorithm in the particle filter framework. Furthermore, an iterative method is presented to get the global minimum of the residual and the coefficients. Finally, an alternative template update scheme is adopted to avoid the tracking drift which is caused by the inaccurate update. In the experiment, we test the algorithm on 9 sequences, and compare the results with 5 state-of-art methods. According to the results, we can conclude that our algorithm is more robust than the other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang D, Yang J, Yang L and Ge H, Journal of Optoelectronics ·Laser 27, 1066 (2016). (in Chinese)

    Google Scholar 

  2. Li C, Shi J, Xu L and Wei L, Journal of Optoelectronics ·Laser 26, 1381 (2015). (in Chinese)

    Google Scholar 

  3. Yang H, Wu X, He B and Zhu M, Journal of Optoelectronics ·Laser 26, 170 (2015). (in Chinese)

    Google Scholar 

  4. Bai T. and Li Y., IEEE Trans. on Industrial Electronics 10, 538 (2014).

    Article  Google Scholar 

  5. Ross D. A., Lim J., Lin R. S. and Yang M. H., International Journal of Computer Vision 77, 125 (2008).

    Article  Google Scholar 

  6. Turk M. A. and Pentland A. P., J. Cogn. Neurosci. 3, 71 (2001).

    Article  Google Scholar 

  7. Shirazi S., Harandi M., Lovell B.C. and Sanderson C., Object Tracking via Non-euclidean Geometry: A Grassmann Approach, Proc. IEEE Winter Conf. on Applications of Comput. Vision (WACV), 901 (2014).

    Google Scholar 

  8. Kumar B.S., Swamy M.N.S. and Ahmad M.O., Weighted Residual Minimization in PCA Subspace for Visual Tracking, IEEE International Symposium on Circuits and Systems, 986 (2016).

    Google Scholar 

  9. Wright J., Yang A., Ganesh A., Sastry S. and Ma Y., IEEE Transactions on Pattern Analysis & Machine Intelligence 31, 210 (2008).

    Article  Google Scholar 

  10. Yang J., Wright J., Huang T. S. and Ma Y., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 19, 2861 (2010).

    Article  Google Scholar 

  11. Cevher V., Sankaranarayanan A., Duarte M. F., Reddy D., Baraniuk R. G. and Chellappa R., Compressive Sensing for Background Subtraction, European Conference on Computer Vision, Springer Berlin Heidelberg, 155 (2008).

    Google Scholar 

  12. Mei X., Ling H. B., Wu Y., Blasch E. and Bai L., Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection, The 24th IEEE Conference on Computer Vision and Pattern Recognition, 1257 (2011).

    Google Scholar 

  13. Mei X. and Ling H. B., Robust Visual Tracking using l1 Minimization, IEEE International Conference on Computer Vision, 1436 (2009).

    Google Scholar 

  14. Bao C. L., Wu Y., Ling H. B. and Ji H., Real Time Robust L1 Tracker using Accelerated Proximal Gradient Approach, IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1830 (2012).

    Google Scholar 

  15. Zhuang B.H., Lu H.C., Xiao Z.Y. and Wang D., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society 23, 1872 (2014).

    Article  Google Scholar 

  16. Wang D., Lu H.C. and Yang M.H., Least Soft-threshold Squares Tracking, IEEE Computer Vision and Pattern Recognition, 2371 (2013).

    Google Scholar 

  17. Xiao Z.Y., Lu H.C. and Wang D., IEEE Transactions on Circuits & Systems for Video Technology 24, 1301 (2014).

    Article  Google Scholar 

  18. Wu Y., Lim J. and Yang M.H., IEEE Transactions on Pattern Analysis & Machine Intelligence 37, 1834 (2015).

    Article  Google Scholar 

  19. Zhong W., Lu H.C. and Yang M.H., Robust Object Tracking via Sparsity-based Collaborative Model, IEEE Computer Vision and Pattern Recognition, 1838 (2012).

    Google Scholar 

  20. Kalal Z., Mikolajczyk K. and Matas J.R., IEEE Transactions on Pattern Analysis & Machine Intelligence 34, 1409 (2012).

    Article  Google Scholar 

  21. Zhang T., Ghanem B. and Liu S., International Journal of Computer Vision 101, 367 (2013).

    Article  MathSciNet  Google Scholar 

  22. Everingham M., Van Gool L., Williams C.K., Winn J. and Zisserman A., International Journal of Computer Vision 88, 303 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-bing Chen  (陈典兵).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61401425).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Db., Zhu, M. & Wang, Hl. Visual tracking based on the sparse representation of the PCA subspace. Optoelectron. Lett. 13, 392–396 (2017). https://doi.org/10.1007/s11801-017-7080-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-017-7080-z

Navigation