Skip to main content

Advertisement

Log in

Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics

  • Energy and Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The pyrolysis of pure biomass, high density polyethylene (HDPE), polypropylene (PP) and polyethylene terephthalate (PET), plastic mixtures [HDPE+PP+PET (1: 1: 1)], and biomass/plastic mixture (9: 1, 3: 1, 1: 1, 1: 3 and 1: 9) were investigated by using a thermogravimetric analyzer under a heating rate at 10 °C/min from room temperature to 800 °C. Paper was selected as the biomass sample. Results obtained from this comprehensive investigation indicated that biomass was decomposed mainly in the temperature range of 290–420 °C, whereas thermal degradation temperature of plastic mixture is 390–550 °C. The percentage weight loss difference (W) between experimental and theoretical ones was calculated, which reached a significantly high value of (−)15 to (−)50% at around 450 °C in various blend materials. These thermogravimetric results indicate the presence of significant interaction and synergistic effect between biomass and plastic mixtures during their co-pyrolysis at the high temperature region. With increase in the amount of plastic mixture in blend material, the char production has diminished at final pyrolysis temperature range. Additionally, a kinetic analysis was performed to fit with TGA data, the entire pyrolysis processes being considered as one or two consecutive first order reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Sharypov, N. G. Beregovtsova, B. N. Kuznetsov, L. Membrado, V. L. Cebolla, N. Marin and J. V. Weber, J. Anal. Appl. Pyrolysis, 67, 325 (2003).

    Article  CAS  Google Scholar 

  2. Y. Matsuzawa, M. Ayabe and J. Nishino, Polym. Deg. Stab., 71, 435 (2001).

    Article  Google Scholar 

  3. L. Vivero, C. Barriocanal, R. Alvarez and M. A. Diez, J. Anal. Appl. Pyrolysis, 74, 327 (2005).

    Article  CAS  Google Scholar 

  4. L. Zhou, Y. Wang, Q. Huang and J. Cai, Fuel Process. Tech., 87, 963 (2006).

    Article  CAS  Google Scholar 

  5. N. Marin, S. Collura, V. I. Sharypov, N. G. Beregovtsova, S. V. Baryshnikov, B. N. Kutnetzov, V. Cebolla and J. V. Weber, J. Anal. Appl. Pyrolysis, 65, 41 (2002).

    Article  CAS  Google Scholar 

  6. F. Shafizadeh, Adv. in Carbohydrate Chem., 23, 419 (1968).

    CAS  Google Scholar 

  7. A. Broido and M. Weenstein, In Proceedings of the 3rd International Conference on Thermal Analysis. Basel: Birkhauser Verlag, 285 (1971).

    Google Scholar 

  8. H. Higgins, J. Polym. Sci., 28, 645 (1958).

    Article  CAS  Google Scholar 

  9. A. G. W. Bradbury, Y. Sakai and F. Shafizadeh, J. Appl. Polym. Sci., 23, 3271 (1979).

    Article  CAS  Google Scholar 

  10. F. J. Kilzer and A. Broido, Pyrodynamics, 2, 151 (1965).

    CAS  Google Scholar 

  11. Jr. M. J. Antal, Advances in solar energy. New York: Solar Energy Society, pp. 61–111 (1983).

    Google Scholar 

  12. G. R. Ponder, G. N. Richards and T. T. Stevenson, J. Anal. Appl. Pyrolysis, 22, 217 (1992).

    Article  CAS  Google Scholar 

  13. B. K. Kandola, A. R. Horrocks, D. Price and G. V. Coleman, J. Rev. Macromol. Chem. Phys., C36(4), 721 (1996).

    CAS  Google Scholar 

  14. S. L. Mardosky, editor. Thermal degradation of organic polymer, Interscience Publishers (1964).

  15. M. Murata and T. Makino, Bull. Chem. Soc. Jpn., 12, 2414 (1973).

    Google Scholar 

  16. M. Murata and T. Makino, Bull. Chem. Soc. Jpn., 1, 192 (1975).

    Google Scholar 

  17. M. Dziêcio and J. Trzeszczyñski, J. Appl. Polym. Sci., 77, 1894 (2000).

    Article  Google Scholar 

  18. B. Saha and A. K. Ghosal, Chem. Engg. J., 111, 39 (2005).

    Article  CAS  Google Scholar 

  19. B. Saha, A. K. Maiti and A. K. Ghosal, Thermochimic. Acta, 444, 46 (2006).

    Article  CAS  Google Scholar 

  20. M. Murata and T. Makino, Bull. Chem. Soc. Jpn., 7, 1241 (1975).

    Google Scholar 

  21. R. R. Stromberg, S. Straus and B. G. Achhammer, J. Polym. Sci., 35, 355 (1959).

    Article  CAS  Google Scholar 

  22. R. Knuemann and H. Bockhorn, Combust. Sci. Tech., 101, 285 (1994).

    Article  CAS  Google Scholar 

  23. C. H. Wu, C. Y. Chang, J. L. Hor, S. M. Shin and F. W. Chang, Canadian J. Chem. Eng., 72, 644 (1994).

    CAS  Google Scholar 

  24. A. Ballistreri, S. Foti, P. Maravigna, G. Montaudo and E. Scamporrino, Polymer, 22, 131 (1981).

    Article  CAS  Google Scholar 

  25. C. A. Koufopanos, G. Maschio and A. Lucchesi, Canadian J. Chem. Eng., 67, 75 (1989).

    Article  CAS  Google Scholar 

  26. T. Hatakeyama and F. X. Quinn, Thermal analysis — fundamentals and applications to polymer science, Wiley, Chichester (1999).

    Google Scholar 

  27. M. N. Nassar, Energy Sources, 21, 131 (1999).

    Article  Google Scholar 

  28. K. G. Mansaray and A. E. Ghaly, Energy Sources, 21, 899 (1999).

    Article  CAS  Google Scholar 

  29. J. A. Caballero, A. Marcilla and J. A. Conesa, J. Anal. Appl. Pyrolysis, 44, 75 (1997).

    Article  CAS  Google Scholar 

  30. L. Helsen and E. vanden Buick, J. Anal. Appl. Pyrolysis, 56, 51 (2000).

    Article  Google Scholar 

  31. E. Kastanaki, D. Vamvuka, P. Grammelis and E. Kakaras, Fuel Process. Technol., 77–78, 159 (2002).

    Article  Google Scholar 

  32. V. I. Sharypov, N. Marin, N. G. Beregovtsova, S. V. Baryshnikov, B. N. Kuznetzov, V. L. Cebolla and J.V. Weber, J. Anal. Appl. Pyrolysis, 64, 15 (2002).

    Article  CAS  Google Scholar 

  33. E. Jakab, G. Varhegyi and O. Faix, J. Anal. Appl. Pyrolysis, 56, 273 (2000).

    Article  CAS  Google Scholar 

  34. F. J. Kilzer and A. Broido, Pyrodynamics, 2, 151 (1965).

    CAS  Google Scholar 

  35. I. Martin-Gullón, M. Esperanza and R. Font, J. Anal. Appl. Pyrolysis, 58–59, 635 (2001).

    Article  Google Scholar 

  36. N. Horvat and F. T. T. Ng, Fuel, 78, 459 (1999).

    Article  CAS  Google Scholar 

  37. H. Bockhorn, A. Hornung, U. Hornung and D. Schawaller, J. Anal. Appl. Pyrolysis, 48, 93 (1999).

    Article  CAS  Google Scholar 

  38. A. W. Coats and J. F. Redfern, Nature, 68, 201 (1964).

    Google Scholar 

  39. V. K. Mustafa, O. Esber, K. Ozgen and H. Cahit, J. Anal. Appl. Pyrolysis, 45, 103 (1998).

    Article  Google Scholar 

  40. P. R. Solomon, M. A. Serio, R. M. Carangelo and J. R. Markham, Fuel, 65, 82 (1986).

    Google Scholar 

  41. G. P. Ying, V. Enrique and P. Luis, Fuel, 75, 412 (1996).

    Article  Google Scholar 

  42. M. J. Lazaro, R. Moliner and I. Suelves, J. Anal. Appl. Pyrolysis, 47, 111 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daewon Pak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, J., Kim, C., Kim, R. et al. Thermogravimetric characteristics and kinetic study of biomass co-pyrolysis with plastics. Korean J. Chem. Eng. 25, 1047–1053 (2008). https://doi.org/10.1007/s11814-008-0171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0171-6

Key words

Navigation