Skip to main content
Log in

Performance characterization of direct formic acid fuel cell using porous carbon-supported palladium anode catalysts

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Palladium particles supported on porous carbon of 20 and 50 nm pore diameters were prepared and applied to the direct formic acid fuel cell (DFAFC). Four different anode catalysts with Pd loading of 30 and 50 wt% were synthesized by using impregnation method and the cell performance was investigated with changing experimental variables such as anode catalyst loading, formic acid concentration, operating temperature and oxidation gas. The BET surface areas of 20 nm, 30 wt% and 20 nm, 50 wt% Pd/porous carbon anode catalysts were 135 and 90 m2/g, respectively. The electro-oxidation of formic acid was examined in terms of cell power density. Based on the same amount of palladium loading with 1.2 or 2 mg/cm2, the porous carbon-supported palladium catalysts showed higher cell performance than unsupported palladium catalysts. The 20 nm, 50 wt% Pd/porous carbon anode catalyst generated the highest maximum power density of 75.8 mW/cm2 at 25 °C. Also, the Pd/porous carbon anode catalyst showed less deactivation at the high formic acid concentrations. When the formic acid concentration was increased from 3 to 9 M, the maximum power density was decreased from 75.8 to 40.7 mW/cm2 at 25 °C. Due to the high activity of Pd/porous carbon catalyst, the cell operating temperature has less effect on DFAFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Dillon, S. Srinivasan, A. S. Arico and V. Antonucci, J. Power Sources, 127, 112 (2004).

    Article  CAS  Google Scholar 

  2. S. Ha, B. Adams and R. I. Masel, J. Power Sources, 128, 119 (2004).

    Article  CAS  Google Scholar 

  3. C. Rice, S. Ha, R. I. Masel and A. Wieckowski, J. Power Sources, 115, 229 (2003).

    Article  CAS  Google Scholar 

  4. S. Ha, C. Rice, R. I. Masel and A. Wieckowski, J. Power Sources, 112, 655 (2002).

    Article  CAS  Google Scholar 

  5. C. Rice, S. Ha, R. I. Masel, P. Waszczuk, A. Wieckowski and T. Barnard, J. Power Sources, 111, 83 (2002).

    Article  CAS  Google Scholar 

  6. Y.W. Rhee, S. Ha and R. I. Masel, J. Power Sources, 117, 35 (2003).

    Article  CAS  Google Scholar 

  7. X. H. Xia and T. Iwasita, J. Electrochem. Soc., 140, 2559 (1993).

    Article  CAS  Google Scholar 

  8. N. M. Markovic, H. A. Gasteiger, P. N. Ross, X. Jiang, I. Villegas and J. Weaver, Electrochim. Acta., 40, 91 (1995).

    Article  CAS  Google Scholar 

  9. R. Parsons and T. VanderNoot, J. Electroanal. Chem., 257, 9 (1998).

    Article  Google Scholar 

  10. J. Jiang and A. Kucernak, J. Electroanal. Chem., 520, 64 (2002).

    Article  CAS  Google Scholar 

  11. J. S. Kim, J. K. Yu, H. S. Lee, J.Y. Kim, Y. C. Kim, J. H. Han, I. H. Oh and Y.W. Rhee, Korean J. Chem. Eng., 22, 661 (2005).

    Article  CAS  Google Scholar 

  12. K. H. Kim, J. K. Yu, H. S. Lee, J. H. Choi, S.Y. Noh, S. K. Yoon, C. S. Lee, T. S. Hwang and Y.W. Rhee, Korean J. Chem. Eng., 24, 518 (2007).

    Article  CAS  Google Scholar 

  13. X. Wang, Y. Tang, Y. Gao and T. Lu, J. Power Sources, 175, 784 (2008).

    Article  CAS  Google Scholar 

  14. S. Ha, R. Laesen and R. I. Masel, J. Power Sources, 144, 28 (2005).

    Article  CAS  Google Scholar 

  15. L. Zhang, Y. Tang, J. Bao, T. Lu and C. Li, J. Power Sources, 162, 177 (2006).

    Article  CAS  Google Scholar 

  16. S. Yang, X. Zhang, H. Mi and X. Ye, J. Power Sources, 175, 26 (2008).

    Article  CAS  Google Scholar 

  17. Z. Liu, L. Hong, M. P. Tham, T. H. Lim and H. Jiang, J. Power Sources, 161, 831 (2006).

    Article  CAS  Google Scholar 

  18. K. D. Nam, T. J. Kim, S. K. Kim, B. R. Lee, D. H. Peck, S. K. Rhu and D. H. Jung, J. Korean Ind. Eng. Chem., 17, 223 (2006).

    CAS  Google Scholar 

  19. Y. Zhu, S. Ha and R. I. Masel, J. Power Sources, 130, 8 (2004).

    Article  CAS  Google Scholar 

  20. N. Nakagawa and Y. Xiu, J. Power Sources, 118, 248 (2003).

    Article  CAS  Google Scholar 

  21. J. K. Yu, H. S. Lee, K. H. Kim, Y. C. Kim, J. H. Han, I. H. Oh and Y. W. Rhee, Korean Chem. Eng. Res., 44, 314 (2006).

    CAS  Google Scholar 

  22. P. C. Rieke and N. E. Vanderborgh, J. Membrane Science, 32, 313 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Woo Rhee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, S.D., Choi, J.H., Noh, S.Y. et al. Performance characterization of direct formic acid fuel cell using porous carbon-supported palladium anode catalysts. Korean J. Chem. Eng. 26, 1040–1046 (2009). https://doi.org/10.1007/s11814-009-0173-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0173-z

Key words

Navigation