Skip to main content
Log in

Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present study provides an electrocoagulation process for the removal of iron from drinking water with aluminum alloy as the anode and stainless steel as the cathode. The studies were carried out as a function of pH, temperature and current density. The adsorption capacity was evaluated with both the Langmuir and the Freundlich isotherm models. The results showed that the maximum removal efficiency of 98.8% was achieved at a current density of 0.06 A dm−2, at a pH of 6.5. The adsorption of iron preferably fitting the Langmuir adsorption isotherm suggests monolayer coverage of adsorbed molecules. The adsorption process follows second-order kinetics. Temperature studies showed that adsorption was endothermic and spontaneous in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Das, J. Talukdar, S. Sarma, B. Gohain, R. K. Dutta and A. C. Das, Curr. Sci., 85, 657 (2003).

    CAS  Google Scholar 

  2. D. B. Mahanta, N. N. Das and R. K. Dutta, Indian J. Environ. Prot., 24, 654 (2004).

    CAS  Google Scholar 

  3. R. Sharma, S. Shah and C. Mahanta, Asain J. Water Environ. Pollut., 2, 47 (2005).

    CAS  Google Scholar 

  4. N. Subba Rao, Environ. Monit. Assess., 136, 437 (2007).

    Article  Google Scholar 

  5. WHO Guidelines for Drinking Water Quality, Health criteria and other supporting information, 2nd edition (2), WHO, Geneva (1996).

    Google Scholar 

  6. Council directive 98/83/EC on the quality of water intended for human consumption, L330/32-L330/50, Official Journal of the European Communities (1998).

  7. Central pollution control board, Ministry of Environment and Forests, http://www.cpcb.nic.in Government of India, Delhi.

  8. K. Vaaramaa and H. J. Lehto, Desalination, 155, 157 (2003).

    Article  CAS  Google Scholar 

  9. R. Munter, H. Ojaste and J. Sutt, J. Environ. Eng., 131, 1014 (2005).

    Article  CAS  Google Scholar 

  10. W. C. Andersen and T. J. Bruno, Anal. Chim. Acta, 485, 1 (2003).

    Article  CAS  Google Scholar 

  11. P. Berbenni, A. Pollice, R. Canziani, L. Stabile and F. Nobili, Bioresour. Technol., 74, 109 (2000).

    Article  CAS  Google Scholar 

  12. H. A. Aziz, M. S. Yusoff, M. N. Adlan, N. H. Adnan and S. Alias, Water Manage., 24, 353 (2004).

    CAS  Google Scholar 

  13. D. Ellis, C. Bouchard and G. Lantagne, Desalination, 130, 255 (2000).

    Article  CAS  Google Scholar 

  14. B. Das, P. Hazarika, G. Saikia, H. Kalita, D. C. Goswami, H. B. Das, S. N. Dube and R. K. Dutta, J. Hazard. Mater., 141, 834 (2007).

    Article  CAS  Google Scholar 

  15. B. Y. Cho, Process Biochem., 40, 3314 (2005).

    Article  CAS  Google Scholar 

  16. D.W. Miwa, G. R. P. Malpass, S. A. S. Machado and A. J. Motheo, Water Res., 40, 3281 (2006).

    Article  CAS  Google Scholar 

  17. E. Onder, A. S. Koparal and U. B. Ogutveren, Sep. Purif. Technol., 52, 527 (2007).

    Article  Google Scholar 

  18. M. Ikematsu, K. Kaneda, M. Iseki and M. Yasuda, Sci. Total Environ., 382, 159 (2007).

    Article  CAS  Google Scholar 

  19. C. Carlesi Jara, D. Fino, V. Specchia, G. Saracco and P. Spinelli, Appl. Catals. B, 70, 479 (2007).

    Article  Google Scholar 

  20. P. A. Christensen, T. A. Egerton, W. F. Lin, P. Meynet, Z.G. Shaoa and N. G. Wright, Chem. Commun., 38, 4022 (2006).

    Article  Google Scholar 

  21. A. Carlos, M. Huitle and S. Ferro, Chem. Soc. Rev., 35, 1324 (2006).

    Article  Google Scholar 

  22. C. Gabrielli, G. Maurin, H. Francy-Chausson, P. Thery, T. T. M. Tran and M. Tlili, Desalination, 201, 150 (2006).

    Article  CAS  Google Scholar 

  23. X. Chen, G. Chen and P. L. Yue, Chem. Eng. Sci., 57, 2449 (2002).

    Article  CAS  Google Scholar 

  24. G. Chen, Sep. Purif. Technol., 38, 11 (2004).

    Article  Google Scholar 

  25. N. Adhoum and L. Monser, Chem. Eng. Process, 43, 1281 (2004).

    Article  CAS  Google Scholar 

  26. M. Kobya, O. T. Can and M. Bayramoglu, J. Hazard. Mater., B100, 163 (2003).

    Article  Google Scholar 

  27. C. Namasivayam and K. Prathap, J. Hazard. Mater., 123B, 127 (2005).

    Article  Google Scholar 

  28. G. Mckay and Y. S. Ho, Water Res., 33, 578 (1999).

    Article  Google Scholar 

  29. C. Namasivayam and S. Senthil Kumar, Ind. Eng. Chem. Res., 37, 4816 (1998).

    Article  CAS  Google Scholar 

  30. F. H. Uber, Z. Phys. Chem., 57, 387 (1985).

    Google Scholar 

  31. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).

    Article  CAS  Google Scholar 

  32. L. D. Michelson, P. G. Gideon, E. G. Pace and L. H. Kutal, US Department Industry, Office of Water Research and Technology Bulletin (1975).

  33. W. Nigussie, F. Zewgeb and B. S. Chandravanshi, J. Hazard. Mater., 147, 954 (2007).

    Article  CAS  Google Scholar 

  34. S. Nayak Preeti and B. K. Singh, Res. J. Chem. Environ., 11, 23 (2007).

    Google Scholar 

  35. X.Y. Yang and A. D. Bushra, Chemical Engineering Journal, 83, 15 (2001).

    Article  CAS  Google Scholar 

  36. A. K. Golder, A.N. Samantha and S. Ray, Sep. Purif. Technol., 52, 102 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramanyan Vasudevan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, S., Jayaraj, J., Lakshmi, J. et al. Removal of iron from drinking water by electrocoagulation: Adsorption and kinetics studies. Korean J. Chem. Eng. 26, 1058–1064 (2009). https://doi.org/10.1007/s11814-009-0176-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0176-9

Key words

Navigation