Skip to main content
Log in

A new approach for optimization of electrospun nanofiber formation process

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Precise control of fiber diameter during electrospinning is very crucial for many applications. A systematic and quantitative study on the effects of processing variables enables us to control the properties of electrospun nanofibers. In this contribution, response surface methodology (RSM) was employed to quantitatively investigate the simultaneous effects of four of the most important parameters, namely solution concentration (C), spinning distance (d), applied voltage (V) and volume flow rate (Q), on mean fiber diameter (MFD) as well as standard deviation of fiber diameter (StdFD) in electrospinning of polyvinyl alcohol (PVA) nanofibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. I. Taylor, Proc. Roy. Soc. London, 313, 453 (1969).

    Article  Google Scholar 

  2. J. Doshi and D. H. Reneker, J. Electrostatics, 35, 151 (1995).

    Article  CAS  Google Scholar 

  3. H. Fong and D. H. Reneker, Electrospinning and the formation of nanofibers, in: D.R. Salem (Ed.), Structure formation in polymeric fibers, Hanser, Cincinnati (2001).

    Google Scholar 

  4. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  5. R. Derch, A. Greiner and J.H. Wendorff, Polymer nanofibers prepared by electrospinning, in: J. A. Schwarz, C. I. Contescu and K. Putyera (Eds.), Dekker encyclopedia of nanoscience and nanotechnology, CRC, New York (2004).

    Google Scholar 

  6. A. K. Haghi and M. Akbari, Phys. Stat. Sol. A, 204, 1830 (2007).

    Article  CAS  Google Scholar 

  7. P.W. Gibson, H. L. Schreuder-Gibson and D. Rivin, AIChE J., 45, 190 (1999).

    Article  CAS  Google Scholar 

  8. M. Ziabari, V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 25, 923 (2008).

    Article  CAS  Google Scholar 

  9. Z.M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  10. M. Li, M. J. Mondrinos, M.R. Gandhi, F.K. Ko, A. S. Weiss and P. I. Lelkes, Biomaterials, 26, 5999 (2005).

    Article  CAS  Google Scholar 

  11. E.D. Boland, B. D. Coleman, C. P. Barnes, D.G. Simpson, G. E. Wnek and G. L. Bowlin, Acta Biomater., 1, 115 (2005).

    Article  Google Scholar 

  12. J. Lannutti, D. Reneker, T. Ma, D. Tomasko and D. Farson, Mater. Sci. Eng. C, 27, 504 (2007).

    Article  CAS  Google Scholar 

  13. J. Zeng, L. Yang, Q. Liang, X. Zhang, H. Guan, C. Xu, X. Chen and X. Jing, J. Control. Release, 105, 43 (2005).

    Article  CAS  Google Scholar 

  14. E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D.G. Simpson, E. H. Sanders and G. E. Wnek, J. Control. Release, 81, 57 (2002).

    Article  CAS  Google Scholar 

  15. M. S. Khil, D. I. Cha, H.-Y. Kim, I.-S. Kim and N. Bhattarai, J. Biomed. Mater. Res. Part B: Appl. Biomater., 67, 675 (2003).

    Article  Google Scholar 

  16. B.M. Min, G. Lee, S.H. Kim, Y. S. Nam, T. S. Lee and W.H. Park, Biomaterials, 25, 1289 (2004).

    Article  CAS  Google Scholar 

  17. X.H. Qin and S.Y. Wang, J. Appl. Polym. Sci., 102, 1285 (2006).

    Article  CAS  Google Scholar 

  18. H. S. Park and Y. O. Park, Korean J. Chem. Eng., 22, 165 (2005).

    Article  CAS  Google Scholar 

  19. J. S. Kim and D. H. Reneker, Poly. Eng. Sci., 39, 849 (1999).

    Article  CAS  Google Scholar 

  20. S.W. Lee, S.W. Choi, S. M. Jo, B. D. Chin, D.Y. Kim and K.Y. Lee, J. Power Sources, 163, 41 (2006).

    Article  CAS  Google Scholar 

  21. C. Kim, J. Power Sources, 142, 382 (2005).

    Article  CAS  Google Scholar 

  22. N. J. Pinto, A. T. Johnson, A. G. MacDiarmid, C. H. Mueller, N. Theofylaktos, D. C. Robinson and F.A. Miranda, Appl. Phys. Lett., 83, 4244 (2003).

    Article  CAS  Google Scholar 

  23. D. Aussawasathien, J.-H. Dong and L. Dai, Synthetic Met., 54, 37 (2005).

    Article  Google Scholar 

  24. S.-Y. Jang, V. Seshadri, M.-S. Khil, A. Kumar, M. Marquez, P. T. Mather and G. A. Sotzing, Adv. Mater., 17, 2177 (2005).

    Article  CAS  Google Scholar 

  25. S.-H. Tan, R. Inai, M. Kotaki and R. Ramakrishna, Polymer, 46, 6128 (2005).

    Article  CAS  Google Scholar 

  26. A. Ziabicki, Fundamentals of fiber formation: The science of fiber spinning and drawing, Wiley, New York (1976).

    Google Scholar 

  27. A. Podgóski, A. Bałazy and L. Gradoń, Chem. Eng. Sci., 61, 6804 (2006).

    Article  Google Scholar 

  28. B. Ding, M. Yamazaki and S. Shiratori, Sens. Actuators B, 106, 477 (2005).

    Article  Google Scholar 

  29. J.R. Kim, S.W. Choi, S.M. Jo, W. S. Lee and B.C. Kim, Electrochim. Acta, 50, 69 (2004).

    Article  CAS  Google Scholar 

  30. L. Moroni, R. Licht, J. de Boer, J. R. de Wijn and C.A. van Blitterswijk, Biomaterials, 27, 4911 (2006).

    Article  CAS  Google Scholar 

  31. T. Wang and S. Kumar, J. Appl. Polym. Sci., 102, 1023 (2006).

    Article  CAS  Google Scholar 

  32. W. Cui, X. Li, S. Zhou and J. Weng, J. Appl. Polym. Sci., 103, 3105 (2007).

    Article  CAS  Google Scholar 

  33. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus and F. Ko, Polymer, 45, 3701 (2004).

    Article  CAS  Google Scholar 

  34. S.Y. Gu, J. Ren and G. J. Vancso, Eur. Polym. J., 41, 2559 (2005).

    Article  CAS  Google Scholar 

  35. S. Y. Gu and J. Ren, Macromol. Mater. Eng., 290, 1097 (2005).

    Article  CAS  Google Scholar 

  36. O. S. Yördem, M. Papila and Y. Z. Menceloğlu, Mater. Design, 29, 34 (2008).

    Article  Google Scholar 

  37. I. Sakurada, Polyvinyl alcohol fibers, CRC, New York (1985).

    Google Scholar 

  38. F. L. Marten, Vinyl alcohol polymers, in: H. F. Mark (Ed.), Encyclopedia of polymer science and technology, 3rd ed., vol. 8, Wiley (2004).

  39. Y.D. Kwon, S. Kavesh and D.C. Prevorsek, U.S. Patent, 4,440,711 (1984).

  40. S. Kavesh and D. C. Prevorsek, U.S. Patent, 4,551,296 (1985).

  41. H. Tanaka, M. Suzuki and F. Uedo, U.S. Patent, 4,603,083 (1986).

  42. G. Paradossi, F. Cavalieri, E. Chiessim, C. Spagnoli and M. K. Cowman, J. Mater. Sci.: Mater. Med., 14, 687 (2003).

    Article  CAS  Google Scholar 

  43. G. Zheng-Qiu, X. Jiu-Mei and Z. Xiang-Hong, Biomed. Mater. Eng., 8, 75 (1998).

    Google Scholar 

  44. M. Oka, K. Ushio, P. Kumar, K. Ikeuchi, S.H. Hyon, T. Nakamura and H. Fujita, P. I. Mech. Eng. H, 214, 59 (2000).

    Article  CAS  Google Scholar 

  45. K. Burczak, E. Gamian and A. Kochman, Biomaterials, 17, 2351 (1996).

    Article  CAS  Google Scholar 

  46. J.K. Li, N. Wang and X. S. Wu, J. Control. Release, 56, 117 (1998).

    Article  CAS  Google Scholar 

  47. A. S. Hoffman, Adv. Drug Delivery Rev., 43, 3 (2002).

    Article  Google Scholar 

  48. J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J.H. Wendorff and A. Greiner, Biomacromolecules, 6, 1484 (2005).

    Article  CAS  Google Scholar 

  49. K. H. Hong, Polym. Eng. Sci., 47, 43 (2007).

    Article  CAS  Google Scholar 

  50. M. Ziabari, V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 25, 919 (2008).

    Article  CAS  Google Scholar 

  51. M. Ziabari, V. Mottaghitalab and A.K. Haghi, Braz. J. Chem. Eng., 26, 53 (2009).

    Article  Google Scholar 

  52. M. Ziabari, V. Mottaghitalab, S. T. McGovern and A. K. Haghi, Nanoscale Res. Lett., 2, 597 (2007).

    Article  Google Scholar 

  53. M. Ziabari, V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 25, 905 (2008).

    Article  CAS  Google Scholar 

  54. L.H. Sperling, Introduction to physical polymer science, 4th ed., Wiley, New Jersey (2006).

    Google Scholar 

  55. J.C. J. F. Tacx, H.M. Schoffeleers, A.G. M. Brands and L. Teuwen, Polymer, 41, 947 (2000).

    Article  CAS  Google Scholar 

  56. F.K. Ko, Nanofiber technology, in: Y. Gogotsi (Ed.), Nanomaterials handbook, CRC, Boca Raton (2006).

    Google Scholar 

  57. A. Koski, K. Yim and S. Shivkumar, Mater. Lett., 58, 493 (2004).

    Article  CAS  Google Scholar 

  58. D.C. Montgomery, Design and analysis of experiments, 5th ed., Wiley, New York (1997).

    Google Scholar 

  59. A. Dean and D. Voss, Design and analysis of experiments, Springer, New York (1999).

    Book  Google Scholar 

  60. G. E. P. Box and N. R. Draper, Response surfaces, mixtures, and ridge analyses, Wiley, New Jersey (2007).

    Book  Google Scholar 

  61. K.M. Carley, N.Y. Kamneva and J. Reminga, Response surface methodology, CASOS Technical Report, CMU-ISRI-04-136 (2004).

  62. S. Weisberg, Applied linear regression, 3rd ed., Wiley, New Jersey (2005).

    Google Scholar 

  63. C. Zhang, X. Yuan, L. Wu, Y. Han and J. Sheng, Eur. Polym. J., 41, 423 (2005).

    Article  CAS  Google Scholar 

  64. Q. Li, Z. Jia, Y. Yang, L. Wang and Z. Guan, Preparation and properties of poly(vinyl alcohol) nanofibers by electrospinning, Proceedings of IEEE International Conference on Solid Dielectrics, Winchester, U.K. (2007).

  65. C. Mit-uppatham, M. Nithitanakul and P. Supaphol, Macromol. Chem. Phys., 205, 2327 (2004).

    Article  CAS  Google Scholar 

  66. Y. J. Ryu, H. Y. Kim, K. H. Lee, H. C. Park and D. R. Lee, Eur. Polym. J., 39, 1883 (2003).

    Article  CAS  Google Scholar 

  67. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan and P. Supaphol, Eur. Polym. J., 41, 409 (2005).

    Article  CAS  Google Scholar 

  68. S.C. Baker, N. Atkin, P. A. Gunning, N. Granville, K. Wilson, D. Wilson and J. Southgate, Biomaterials, 27, 3136 (2006).

    Article  CAS  Google Scholar 

  69. S. Sukigara, M. Gandhi, J. Ayutsede, M. Micklus and F. Ko, Polymer, 44, 5721 (2003).

    Article  CAS  Google Scholar 

  70. X. Yuan, Y. Zhang, C. Dong and J. Sheng, Polym. Int., 53, 1704 (2004).

    Article  CAS  Google Scholar 

  71. C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um and Y. H. Park, Polymer, 46, 5094 (2005).

    Article  CAS  Google Scholar 

  72. J.M. Deitzel, J. Kleinmeyer, D. Harris and N.C. Beck Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  73. C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, Polymer, 40, 7397 (1999).

    Article  CAS  Google Scholar 

  74. J. S. Lee, K. H. Choi, H. D. Ghim, S. S. Kim, D. H. Chun, H.Y. Kim and W. S. Lyoo, J. Appl. Polym. Sci., 93, 1638 (2004).

    Article  CAS  Google Scholar 

  75. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  76. S. Kidoaki, I.K. Kwon and T. Matsuda, Biomaterials, 26, 37 (2005).

    Article  CAS  Google Scholar 

  77. X. Zong, K. Kim, D. Fang, S. Ran, B. S. Hsiao and B. Chu, Polymer, 43, 4403 (2002).

    Article  CAS  Google Scholar 

  78. D. Li and Y. Xia, Nano. Lett., 3, 555 (2003).

    Article  CAS  Google Scholar 

  79. W.-Z. Jin, H.-W. Duan, Y.-J. Zhang and F.-F. Li, Nonafiber membrane of EVOH-based ionomer by electrospinning, Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China (2006).

  80. X.M. Mo, C.Y. Xu, M. Kotaki and S. Ramakrishna, Biomaterials, 25, 1883 (2004).

    Article  CAS  Google Scholar 

  81. S. Zhao, X. Wu, L. Wang and Y. Huang, J. Appl. Polym. Sci., 91, 242 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Khodaparast Haghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziabari, M., Mottaghitalab, V. & Haghi, A.K. A new approach for optimization of electrospun nanofiber formation process. Korean J. Chem. Eng. 27, 340–354 (2010). https://doi.org/10.1007/s11814-009-0309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0309-1

Key words

Navigation