Skip to main content
Log in

Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The molecular weight and thermal properties of unfractionated by-product polyolefin wax (wax K) from a naphtha cracking unit, fractionated commercial paraffin wax (wax J) and their blend (wax M) were evaluated and were compared with each other using differential scanning calorimetry (DSC), normal and high-temperature gel permeation chromatography (GPC), and wide-angle X-ray diffraction (WAXD). Such properties as molecular weight distribution, melting temperature and degree of crystallization were altered by blending wax K with wax J. By blending with two parts of wax K and one part of wax J to prepare wax M, M w of wax K was shifted, by half, to that of wax J in order to approach that of wax M, whereas the M n of wax K remains almost unaltered to become that of wax M. In particular the effect of blending of wax K and wax J turned out co-crystallization for the sharper lower-melting-temperature endothermic peak of the blend, indicating narrower molecular distribution, than that of wax K at the melting temperature shifted even below that of wax J. The total degree of crystallinity for the blend, wax M, turns out less than that before blending wax K with wax J, which may be attributed to the effect of co-crystallization due to blending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Wu, Y. Li and G. Wu, Polymer, 46, 3472 (2005).

    Article  CAS  Google Scholar 

  2. I. Krupa and A. S. Luyt, Polym. Deg. Stab., 70, 111 (2000).

    Article  CAS  Google Scholar 

  3. T. N. Mtshali, I. Krupa and A. S. Luyt, Thermochimica Acta., 380, 47 (2001).

    Article  CAS  Google Scholar 

  4. C. A. Fonseca and I. R. Harrison, Thermochimica Acta., 313, 37 (1998).

    Article  CAS  Google Scholar 

  5. J. G. Gao, M. S. Yu and Z. T. Li, European Polymer Journal, 40, 1533 (2004).

    Article  CAS  Google Scholar 

  6. H. S. Ashbaugh, A. Radulescu, R. K. Prud’homme, D. Schwahn, D. Richter and L. J. Fetters, Macromolecules, 35, 7044 (2002).

    Article  CAS  Google Scholar 

  7. A. Radulescu, D. Schwahn, D. Richter and L. J. Fetters, J. Appl. Crystal., 36, 995 (2003).

    Article  CAS  Google Scholar 

  8. A. Radulescu, D. Schwahn, M. Monkenbusch, D. Richter and L. J. Fetters, Physica B. Condensed Matter, 350, e927 (2004).

    Article  CAS  Google Scholar 

  9. S. P. Hlangothi, I. Krupa, V. Djokovi and A. S. Luyt, Polym. Deg. Stab., 79, 53 (2003).

    Article  CAS  Google Scholar 

  10. I. Krupa and A. S. Luyt, Polym. Deg. Stab., 73, 157 (2001).

    Article  CAS  Google Scholar 

  11. I. Krupa and A. S. Luyt, Polymer, 42, 7285 (2001).

    Article  CAS  Google Scholar 

  12. A. N. Wilkinson, S. B. Tattum and A. J. Ryan, Polymer, 38, 1923 (1997).

    Article  Google Scholar 

  13. A. F. Regin, S. C. Solanki and J. S. Saini, Renew. Energy, 31, 2025 (2006).

    Article  Google Scholar 

  14. A. Sharma, S. D. Sharma and D. Buddhi, Energy Conversion and Management, 43, 1923 (2002).

    Article  CAS  Google Scholar 

  15. S. L. Rosen, Fundamental principles of polymeric materials (2 nd Ed.), John Wiley & Sons, Inc., Singapore (1993).

    Google Scholar 

  16. J. Chatterjee, Y. Haik and C. J. Chen, J. Mag. Mag. Mater., 246, 382 (2002).

    Article  CAS  Google Scholar 

  17. T. Ozawa, Polymer, 12, 150 (1971).

    Article  CAS  Google Scholar 

  18. P. S. Umare, R. Antony, K. Gopalakrishnan, G. L. Tembe and B. Trivedi, J. Molecul. Catal. A: Chem., 242, 141 (2005).

    Article  CAS  Google Scholar 

  19. A. J. Ryan, J. L. Stanford, W. B. Thomas and M. W. Nye, Polymer, 38, 759 (1997).

    Article  CAS  Google Scholar 

  20. D. W. Van Krevelen and P. J. Hoftyzer, Properties of polymers: Their estimation and correlation with chemical structure (2 nd Ed.), Elsevier Scientific Publishing Company, Amsterdam (1976).

    Google Scholar 

  21. J. K. Kim and B. K. Kim, J. Jpn. Soc. Powder/Powder Metall., 46, 823 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Hee Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E.J., Park, J.K., Lee, YS. et al. Comparison of thermal properties of crude by-product polyolefin wax, fractionated paraffin wax and their blend. Korean J. Chem. Eng. 27, 524–530 (2010). https://doi.org/10.1007/s11814-010-0113-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0113-y

Key words

Navigation