Skip to main content
Log in

Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The extraction of rare earth elements from apatite concentrate of Chadormalu plant of Iran was studied with the dissolution of ore in nitric acid. The parameters of acidity: 60%, solid to liquid ratio: 30%, leaching time: 30 minute, agitation rate: 200 rpm, temperature: 60 °C and particle size (d80): 50 microns were determined as the optimum operational conditions. The recoveries of lanthanum, cerium, neodymium and yttrium were achieved at 74, 59, 72 and 73%, respectively, in the optimized conditions. Multivariable regression was used to predict La, Ce, Nd, Y and total REEs (Y+Nd+Ce+La) leaching recoveries, using experimental data from laboratory studies. It was achieved quite satisfactory correlations of 0.93, 0.98, 0.99, 0.97 and 0.99 for the prediction of Y, Nd, Ce, La and total REEs recoveries, respectively. It was shown that the proposed equations accurately reproduce the effects of operational variables on the different REEs recoveries, and can be used to optimize the REEs leaching plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ren, Sh. Song, A. Lopez-Valdivieso and Sh. Lu, Int. J. Miner. Process., 59, 237 (2000).

    Article  CAS  Google Scholar 

  2. P. Martina, G. Carlota, A. Chevariera, C. Den-Auwerb and G. Panczerc, J. Nucl. Mater., 275, 268 (1999).

    Article  Google Scholar 

  3. L. Hongfei, G. Fuqiang, Z. Zhifeng, L. Deqian and W. Zhonghuai, J.Alloys and Compounds, 408–412, 995 (2005).

    Google Scholar 

  4. P. Maestro and D. Huguenin, Alloys Compd., 255, 520 (1995).

    Article  Google Scholar 

  5. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis and L. J. Gauckler, Solid State Ionics, 131, 79 (2000).

    Article  CAS  Google Scholar 

  6. E. Jorjani, A. H. Bagherieh and B. Rezai, Jahad Daneshgahi, 26(4), 11 (2007).

    CAS  Google Scholar 

  7. National geosciences database of Iran, Chadormalu iron ore report, Brief information about metallic beneficiation plants, Iranian ministry of industry and mines (in Persian), 60–99 (2003).

  8. F. Habashi, J. Chem. Technol. Biotechnol, GY, 35App, P. 5–14 (1985).

  9. S. Naizhong, Z. Xiaowei, J. Qiong, Z. Weihong and L. Wuping, Korean J. Chem. Eng., 26, 1 (2009).

    Article  Google Scholar 

  10. C. Koopman and G. J. Witkamp, Hydrometallurgy Journal, 58, 51 (2000).

    Article  CAS  Google Scholar 

  11. V. P. Judin and H. E. Sund, Recovery of rare earths from secondary sources by solvent extraction, In: Hydrometallurgy ′81, Society of Chemical Industry, London, P. F4/1–F4/14 (1981).

    Google Scholar 

  12. J. I. Skorovarov, V. D. Kosynkin, S.D. Moiseev and N. N. Rura, J. Alloys and Compounds, 180, 71 (1992).

    Article  CAS  Google Scholar 

  13. V. D. Kosynkin, S. D. Moiseev, C. H. Peterson and B. V. Nikipelov, J. Alloys and Compounds, 192, 118 (1993).

    Article  Google Scholar 

  14. J. S. Preston, P. M. Cole, W. M. Craig and A. M. Feather, Hydrometallurgy, 41, 1 (1996).

    Article  CAS  Google Scholar 

  15. C. Gupta, N. Krishnamurthy, Extractive metallurgy of rare earths, CRC press Inc., 1–540 (2005).

  16. N. Lounamaa, T. Mattila, V. P. Judin and H. E. Sund, Recovery of rare earths phosphorus rock by solvent extraction. In: Proc. second Int. Congress Phosphorus Compounds, Institute Mondial du Phosphate, Paris, 759–768 (1980).

    Google Scholar 

  17. F. Habashi, a Textbook of Hydrometallurgy, Métallurgie Extractive Québec Enr., Quebec, Canada, P.1–689 (1999).

    Google Scholar 

  18. V. P. Judin and H. E. Sund, Recovery of rare earths from secondary sources by solvent extraction, In: Hydrometallurgy’ 81, Society of Chemical Industry, London, P. F4/1–F4/14 (1981).

    Google Scholar 

  19. J. I. Skorovarov, V. D. Kosynkin, S. D. Moiseev and N. N. Rura, J. Alloys and Compounds, 180, 71 (1992).

    Article  CAS  Google Scholar 

  20. V. D. Kosynkin, S. D. Moiseev, C. H. Peterson and B. V. Nikipelov, J. Alloys and Compounds, 192, 118 (1993).

    Article  Google Scholar 

  21. V. D. Kosynkin, A. K. Selivanovsky, V. M. Smolny, N.A. Tarasova and T. T. Fedulova, Incidental separation of rare earth concentrate in nitric acid and sulphuric acid processing of apatite fertilizer, IFA Technical sub-committee and committee meeting, 15–17 September 1999, Novgrod, Russia.

  22. E. T. M. J. Martynowicz, Impurity uptake in calcium sulfate during phosphoric acid processing. PhD thesis, Delft University of Technology, The Netherlands (1994).

    Google Scholar 

  23. F. Habashi, Hydrometallurgy to solve phosphate processing, Industrial Minerals Magazine (2004).

  24. E.V. Smirnova, I. N. Fedorova and I. Lozhkinb, Spectrochimica Acta Journal, 58(2), 329 (2003).

    Article  Google Scholar 

  25. J. L. Chang, L. Gibaek, S. Won and E.Y. En, Korean J. Chem. Eng., 25, 568 (2008).

    Article  Google Scholar 

  26. M. Ziabari, V. Mottaghitalab and A. Khodaparast Haghi, Korean J. Chem. Eng., 27, 340 (2010).

    Article  CAS  Google Scholar 

  27. K. C. Young and K. Chul, Korean J. Chem. Eng., 10, 81 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Chehreh Chelgani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jorjani, E., Bagherieh, A.H. & Chelgani, S.C. Rare earth elements leaching from Chadormalu apatite concentrate: Laboratory studies and regression predictions. Korean J. Chem. Eng. 28, 557–562 (2011). https://doi.org/10.1007/s11814-010-0383-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0383-4

Key words

Navigation