Skip to main content
Log in

New emissions targeting strategy for site utility of process industries

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new procedure for environmental targeting of co-generation system is presented. The proposed method is based on the concepts of pinch technology for total site targeting of fuel, power, steam, environmental impacts and total annualized cost with considering emissions taxes. This approach provides a consistent, general procedure for determining mass flow rates and efficiencies of the applied turbines. This algorithm utilizes the relationship of entropy with enthalpy and isentropic efficiency. Also, the life cycle assessment (LCA) as a well-known tool for analyzing environmental impacts on a wide perspective with reference to a product system and the related environmental and economic impacts have been applied. In this regard, a damage-oriented impact analysis method based on Eco-indicator 99 and footprints analysis was considered. In addition, the present work demonstrates the effect of including both sensible and latent heating of steam in the extended Site Utility Grand Composite Curve (ESUGCC). It is shown that including sensible heating allows for better thermal matching between the processes. Furthermore, the other representation YSUGCC as the other form of Site Utility Grand Composite has been proposed. Two case studies were used to illustrate the usefulness of the new environmental targeting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. R. Dhole and B. Linnhoff, Comput. Chem. Eng., 17, 101 (1993).

    Article  Google Scholar 

  2. K. Raissi, Total site integration, PhD Thesis, UMIST, Manchester (1994).

    Google Scholar 

  3. J. Klemes, V.R. Dhole, K. Raissi, S. J. Perry and L. Puigjaner, Appl. Thermal Eng., 17(8–10), 993 (1997).

    Article  CAS  Google Scholar 

  4. M. Sorin and A. Hammache, Appl. Thermal Eng., 25, 961 (2005).

    Article  Google Scholar 

  5. S. P. Mavromatis and A. C. Kokossis, Chem. Eng. Sci., 53(8), 1585 (1998).

    Article  CAS  Google Scholar 

  6. D. A. Harell, Resource conservation and allocation via process integration, Ph.D. Thesis, Texas A&M University (2004).

    Google Scholar 

  7. P. S. Varbanov, S. Doyle and R. Smith, Chem. Eng. Res. Design, 82(5), 561 (2004).

    Article  CAS  Google Scholar 

  8. T. Mohan and M.M. El-Halwagi, Clean Technol. Environ. Policy, 9(1), 13 (2007).

    Article  Google Scholar 

  9. J.M. Medina-Flores and M. Picón-Núñez, Chem. Eng. Sci., 65(9), 2811 (2010).

    Article  CAS  Google Scholar 

  10. S. Bandyopadhyay, J. Varghese and V. Bansal, Appl. Thermal Eng., 30, 6 (2010).

    Article  Google Scholar 

  11. A. Ghannadzadeh, S. Perry and R. Smith, Chem. Eng. Transactions, 25, 917 (2011).

    Google Scholar 

  12. A. Ghannadzadeh, S. Perry and R. Smith, Appl. Thermal Eng., DOI: 10.10.1016/j.applthermaleng.2011.10.006 (2011).

    Google Scholar 

  13. A. Kapil, I. Bulatov, R. Smith and J.-K. Kim, Chem. Eng. Res. Design, DOI:10.1016/j.cherd.2011.09.001 (2010).

    Google Scholar 

  14. P. S. Varbanov and J. Klemes, Comput. Chem. Eng., 35, 1815 (2011).

    Article  CAS  Google Scholar 

  15. P. Y. Liew, S. R. Wan Alwi, P. S. Varbanov, Z. A. Manan and J. Klemes, Appl. Thermal Eng., 40, 397 (2012).

    Article  Google Scholar 

  16. P. S. Varbanov, Z. Fodor and J. J. Klemeš, Energy, DOI:10.1016/ j.energy.2011.12.025 (2012).

    Google Scholar 

  17. Z. Fodor, J. Klemes, P. S. Varbanov, M. R.W. Walmsley, M. J. Atkins and T. Walmsley, Chem. Eng. Transactions, 29, 409 (2012).

    Google Scholar 

  18. R. Hackl and S. Harvey, Chem. Eng. Transactions, 29, 73 (2012).

    Google Scholar 

  19. N. E. Mohammad Rozali, S.R. Wan Alwi, Z. Abdul-Manan and J. J. Klemeš, Chem. Eng. Transactions, 29, 121 (2012).

    Google Scholar 

  20. A. Nemet, J. Klemes and Z. Kravanja, Energy, 45, 264 (2012).

    Article  Google Scholar 

  21. W. Tjan, R. R. Tan and D. C.Y. Foo, J. Cleaner Production, 18, 848 (2010).

    Article  CAS  Google Scholar 

  22. EPA, Environmental Protection Agency. http://www.epa.gov/climatechange/ (accessed APRIL 2012).

  23. M. Gadallaa, Z. Olujic, P. Jansens, M. Jobson and R. Smith, Environ. Sci. Technol., 39(17) (2005).

    Google Scholar 

  24. I. Dincer and M. A. Rosen, Exergy: energy, environment and sustainable development, Elsevier (2007).

    Google Scholar 

  25. G. Stupara, D. Tucakovia, T. Živanovia, M. Banjaca, S. Beloševib, V. Beljanskib, I. Tomanovib, N. Crnomarkovib and M. Sijerib, The influence of primary measures for reducing NO x emissions on energy steam boiler efficiency, Proceedings of ECOS 2012 — the 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, (125) 1–13, June 26–29, 2012, Perugia, Italy (2012).

    Google Scholar 

  26. International Organization for Standardization (ISO): Environmental management-life cycle assessment. European Standard ENISO14040 and 14044, Geneva (2006).

  27. J. Dewulf and H. Van Langenhove, Environ. Sci. Pollut. Res., 9(4), 267 (2002).

    Article  CAS  Google Scholar 

  28. R. R. Tan and D. C. Y. Foo, Energy, 32, 1422 (2007).

    Article  Google Scholar 

  29. M. J. Atkins, A. S. Morrison and M. R.W. Walmsley, Appl. Energy, 87, 982 (2010).

    Article  Google Scholar 

  30. D. Crilly and T. Zhelev, Energy, 33, 1498 (2008).

    Article  CAS  Google Scholar 

  31. D. Crilly and T. Zhelev, An emergy-based targeting technique for treatment and utilisation of greenhouse gas emissions, In: Novosad, J. (Ed.), Paper Presented in the 18th International Congress of Chemical and Process Engineering (CHISA) — Summary 4: PRES 2008 and System Engineering, 4, 1214 (2008).

    Google Scholar 

  32. S. Bandyopadhyay, D. C.Y. Foo and R. R. Tan, AIChE J., 56(5), 1235 (2009).

    Google Scholar 

  33. S. C. Lee, D. K. S. Ng, D.C.Y. Foo and R. R. Tan, Appl. Energy, 86, 60 (2009).

    Article  Google Scholar 

  34. R. R. Tan, D. C. Y. Foo and D. K. S. Ng, J. Cleaner Production, 17(10), 940 (2009).

    Article  Google Scholar 

  35. W. Tjan, R. R. Tan, D. C.Y. Foo, J. Cleaner Production, 18, 848 (2010).

    Article  CAS  Google Scholar 

  36. L. Cucek, J. Klemes and Z. Kravanja, J. Cleaner Production, 34, 9 (2012).

    Article  Google Scholar 

  37. R. E. H. Ooi, D. C.Y. Foo, D. K. S. Ng and R. R. Tan, Chem. Eng. Transactions, 29, 415 (2012).

    Google Scholar 

  38. L. Èuèek, P. S. Varbanov, J. J. Klemeš and Z. Kravanja, Chem. Eng. Transactions, 29, 61 (2012).

    Google Scholar 

  39. J. Klemes, F. Friedler, I. Bulatov and P. Varbanov, Sustainability in the process industry: integration and optimization, McGraw-Hill, New York (2010).

    Google Scholar 

  40. N. A. AL-Azri, Integrated approaches to the optimization of process-utility systems, Ph.D. Thesis, Texas A&M University (2008).

    Google Scholar 

  41. R. Smith, Chemical Process Design and Integration, Wiley, West Sussex (2005).

    Google Scholar 

  42. C. Monfreda, M. Wackernagel and D. Deumling, Land Use Policy, 21, 231 (2004).

    Article  Google Scholar 

  43. M. A. J. Hujbregts, S. Hellweg and R. Frischknecht, Ecological Economics, 64, 798 (2008).

    Article  Google Scholar 

  44. L. D. Benedetto and J. Klemes, J. Cleaner Production, 17, 900 (2009).

    Article  Google Scholar 

  45. L. Meyer, G. Tsatsaronis, J. Buchgeister, L. Schebek, Energy Int. J., 34, 75 (2009).

    Article  Google Scholar 

  46. A. Boyano, A.M. Blanco-Marigorta, T. Morosuk and G. Tsatsaronis, Energy Int. J., DOI:10.1016/j.energy.2010.05.020 (2010).

    Google Scholar 

  47. Sima Pro, User’s Manual. Pre Consultants BV, Amersfoort (NL) (2007).

    Google Scholar 

  48. A. Nemet, J. Klemes and Z. Kravanja, Energy, 45, 264 (2012).

    Article  Google Scholar 

  49. INDEX MUNDI, www.indexmundi.com/commodities/?commodity=petroleum-price-index (2012).

  50. G.D. Ulrich and P.T. Vasudevan, How to Estimate Utility cost Chemical Engineering, www.che.com/technical_and_practical/2798.html (2006).

    Google Scholar 

  51. Chemical Engineering Economic Indicators, 2012. www.che.com/business_and_economics/economic_indicators.html.

  52. Aguilar O. Design and optimization of flexible utility systems. PhD Thesis, The University of Manchester, Manchester, UK (2005).

    Google Scholar 

  53. GTPRO 18, Thermal Engineering Software for the Power Industry, Thermoflow, Inc., U.S.A. (2008).

    Google Scholar 

  54. STAR Software, Version 2, Center for Process Integration, School of Chemical Engineering & Analytical Science, University of Manchester, UK, Under license of K.N.Toosi University of Technology, Energy and Process Integration Laboratory.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Amidpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manesh, M.H.K., Abadi, S.K., Amidpour, M. et al. New emissions targeting strategy for site utility of process industries. Korean J. Chem. Eng. 30, 796–812 (2013). https://doi.org/10.1007/s11814-012-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-012-0218-6

Key words

Navigation