Skip to main content

Advertisement

Log in

Waste paper sludge as a potential biomass for bio-ethanol production

  • Invited Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

This review describes the utilization of paper sludge (PS), which is waste from the pulp and paper industry. Its advantages make PS the cellulosic biomass with the most potential for bio-refinery research and applicable for industrial scale. Some of the grain based biofuels and chemicals have already been in commercial operation, including fuel ethanol or biochemical products. Unfortunately, research and application of PS are yet in their infancy and suffer from large scale because of low productivity. Reviewing the many researches that are working at the utilization of PS for bio-refineries could encourage the utilization of PS from laboratory research to be applied in industry. For this reason, PS usage as industrial raw material will be effective in solving the environmental problems caused by PS with clean technology. In addition, its conversion to bio-ethanol could offer an alternative solution to the energy crisis from fossil fuel. Two methods of PS utilization as raw material for bio-ethanol production are introduced. The simultaneous saccharification and fermentation (SSF) using cellulase produced by A. cellulolyticus and thermotolerant S. cerevisiae TJ14 gave ethanol yield 0.208 (g ethanol/g PS organic material) or 0.051 (g ethanol/g PS). One pot bioethanol production as a modified consolidated biomass processing (CBP) technology gave ethanol yield 0.19 (g ethanol/g Solka floc) and is considered to be the practical CBP technology for its minimizing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.biomassenergycentre.org.uk/portal/page?_pageid=73,1&_ dad=portal&_schema=PORTAL.

  2. http://www.nnfcc.co.uk/tools/international-biofuels-strategy-projectliquid-transport-biofuels-technology-status-report-nnfcc-08-017 (Evans, G. “International Biofuels Strategy Project. Liquid Transport Biofuels — Technology Status Report, NNFCC 08-017,” National Non-Food Crops Centre, 2008-04-14. Retrieved on 2011-02-16).

  3. http://en.wikipedia.org/wiki/Second_generation_biofuels.

  4. A. Idi and S. E. Mohamad, Interdisciplinary Journal of Contemporary Research in Business, 3, 919 (2011).

    Google Scholar 

  5. J. Prasetyo, J. Zhu, T. Kato and E.Y. Park, Biotechnol. Progr., 1, 104 (2011).

    Article  Google Scholar 

  6. C. Moukamnerd, M. Kino-oka, M. Sugiyama, Y. Kaneko, C. Boonchird, S. Harashima, H. Noda, K. Ninomiya, S. Shioya and Y. Katakura, Appl. Microbiol. Biotechnol., 88, 87 (2010).

    Article  CAS  Google Scholar 

  7. S. Macrelli, J. Mogenson and G. Zacchi, Biotechnology for Biofuels, 5, 22 (2012).

    Article  Google Scholar 

  8. Y. Yamashita, C. Sasaki and Y. Nakamura, Carbohyd. Polymers, 79, 250 (2010).

    Article  CAS  Google Scholar 

  9. J. Shen and F. A. Agblevor, BioprL. Biosyst. Eng., 34, 33 (2010).

    Article  Google Scholar 

  10. S. Larsson, E. Palmqvist, B. Hahn-Hagerdal, C. Tengborg, K. Stenberg, G. Zacchi and N.O. Nilvebrant, Enzyme Microb. Technol., 24, 151 (1999).

    Article  CAS  Google Scholar 

  11. T.D. Ranaatunga, J. Jervis, R. F. Helm, J. D. McMillan and R. J. Wooley, Enzyme Microb. Technol., 27, 240 (2000).

    Article  Google Scholar 

  12. http://infohouse.p2ric.org/ref/12/11563.pdf (K. C. Das, E.W. Tollner, Georgia Univ. Experiment, Athens, Georgia. Retrieved on 2nd October 2012).

  13. http://www.rfu.org/cacw/pollutionSludge4.htm.

  14. J. Prasetyo, N. Kazuya, T. Kato, C. Boonchird, S. Harashima and E. Y. Park, Biotechnol. Biofuels, 4, 35 (2011).

    Article  CAS  Google Scholar 

  15. T. Ando, T. Sakamoto, O. Sugiyama, K. Hiyoshi, N, Matsue and T. Henmi, Clay Sci., 12, 243 (2004).

    CAS  Google Scholar 

  16. L. R. Lynd, K. Lyford, C. R. South, P.G. van Walsum and K. Levenson, TAPPI J., 84, 50 (2001).

    CAS  Google Scholar 

  17. http://ec.europa.eu/environment/waste/studies/compost/landspreading.pdf.

  18. A. T.W. N. Hendriks and G. Zeeman, Bioresour. Technol., 100, 10 (2009).

    Article  CAS  Google Scholar 

  19. http://www.ispub.com/journal/the_internet_journal_of_microbiology/volume_5_number_2_18/article/optimization_of_cellulase_production_by_submerged_fermentation_of_rice_straw_by_trichoderma_ harzianum_rut_c_8230.html.

  20. J. Nielson and J. Villadsen, Bioreaction engineering principles, Plenum Press, New York, 86–87 (1994).

    Google Scholar 

  21. A. Marsushika, H. Inoue, T. Kodaki and S. Sawayama, Appl. Microbiol. Biotechnol., 84, 37 (2009).

    Article  Google Scholar 

  22. B. Erdei, Z. Barta, B. Sipos, K. Reczey, M. Galbe and G. Zacchi, Biotechnol. Biofuel, 3, 16 (2010).

    Article  Google Scholar 

  23. Z. Fan, C. South, K. Lyford, J. Munsie, P.V. Walsum and L.R. Lynd, Bioproc. Biosyst. Eng., 26, 93 (2003).

    Article  CAS  Google Scholar 

  24. http://www.energyproducts.com/Documents/SLUDGPA4a.PDF (K.M. Pope, Paper sludge-waste disposal problem or energy opportunity. Energy products of Idaho 1999. Retrieved in April 2009).

  25. J. Prasetyo, T. Kato and E.Y. Park, Biomass Bioenergy, 34, 1906 (2010).

    Article  CAS  Google Scholar 

  26. R. Lakshmidevi and K. Muthukumar, Int. J. Hydrogen Energy, 35, 3389 (2010).

    Article  CAS  Google Scholar 

  27. Environment Agency, Paper sludge ash: A technical report on the production and use of paper sludge ash. The Old Academy, Banbury, Oxon, UK (2008).

  28. D. Karcher and W. Baser, Paper mill sludge as a mulch during turf grass establishment, In: Clark JR, Evans MR, editors. Horticulture Studies, Fayetteville: Arkansas Agricultural Experiment Station, Research Series, 494, 67 (2002).

  29. J. Zaldivar, J. Nielsen and L. Olsson, Appl. Microbiol. Biotechnol., 56, 17 (2001).

    Article  CAS  Google Scholar 

  30. Y. Ikeda, H. Hayashi, N. Okuda and E.Y. Park, Biotechnol. Progr., 23, 333 (2007).

    Article  CAS  Google Scholar 

  31. S. Kansarn, A novel concept for the enzymatic degradation mechanism of native cellulose by A. cellulolyticus, Shizuoka University Repository (SURE), 91, http://hdl.handle.net/10297/1453, School of Electronic Science Research Report 2002, 23, 89 (2002).

  32. P. Bansal, M. Hall, M. J. Realff, J.H. Lee and A. S. Bommarius, Biotechnol. Adv., 27, 833 (2009).

    Article  CAS  Google Scholar 

  33. I.D. L. Mata, P. Estrada, R. Macarron and J.M. Dominguez, Biochem., 283, 679 (1992).

    Google Scholar 

  34. J. Prasetyo, S. Sumita, N. Okuda and E.Y. Park, Appl. Biochem. Biotechnol., 162, 52 (2010).

    Article  CAS  Google Scholar 

  35. http://www.bioteach.ubc.ca/Biopersonalities/BioTechnologyLab/ellis.pdf.

  36. A. V. Gusakov and A. P. Sinitsyn, Biotechnol. Bioeng., 40, 663 (1992).

    Article  CAS  Google Scholar 

  37. P. A.M. Claassen, J. B. van Lier, A. M. L. Contreras, E.W. J. van Niel, L. Sijtsma, A. J.M. Stams, S. S. de Vries and R. A. Weusthuis, Appl. Microbiol. Biotechnol., 6, 741 (1999).

    Article  Google Scholar 

  38. B. D. Solomon, J. R. Barnes and K. E. Halvorsen, Biomass Bioenergy, 6, 416 (2007).

    Article  Google Scholar 

  39. L.R. Lynd, P. J. Weimer and W. H. van Zyl, Microbiol. Mol. Biol. Rev., 66, 506 (2002).

    Article  CAS  Google Scholar 

  40. L.R. Lynd, W. H. van Zyl, J. E. McBride and M. Laser, Curr. Opin. Biotechnol., 16, 577 (2005).

    Article  CAS  Google Scholar 

  41. S.U. Lee, K. Jung, G.W. Park, C. Seo, Y. K. Hong, W. H. Hong and H. N. Chang, Korean J. Chem. Eng., 29, 831 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasetyo, J., Park, E.Y. Waste paper sludge as a potential biomass for bio-ethanol production. Korean J. Chem. Eng. 30, 253–261 (2013). https://doi.org/10.1007/s11814-013-0003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0003-1

Key words

Navigation