Skip to main content
Log in

Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The adsorption of Cr (VI) from aqueous solution onto nanoparticles hematite (α-Fe2O3) of different morphologies synthesized by acid hydrolysis, transformation of ferrihydrite, sol gel methods has been investigated. The hematite particle sizes were in the range 15.69-85.84 nm and exhibiting different morphologies such as hexagonal, plate-like, nano-cubes, sub-rounded and spherical. The maximum adsorption capacity of Cr (VI) was found to be in the range 6.33–200 mgg−1 for all hematite samples. The kinetics of sorption was rapid, reaching equilibrium at 45–240 minutes. Sorption kinetics and equilibria followed pseudo-second order and Langmuir adsorption isotherm models. The rate constants were in the range 0.996–2.37×10−2 g/mg/min for all samples. The maximum adsorption was attained at pH 3.0, while adsorption decreased as the pH increased from pH 3.0 to 10.0. The study revealed that the hematite with plate-like morphology has the highest adsorption capacity. The sorption process has been found to be feasible following a chemisorption process, and adsorption of Cr (VI) onto hematite nanoparticles was by inner sphere surface complexation due to low desorption efficiency in the range 9.54–53.4%. However, the result of ionic strength revealed that the reaction was by outer sphere complexation. This study showed that morphologies play a vital role in the adsorption capacities of samples of hematite in the removal of Cr (VI) from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J Gao, Y. B. Li and Z. P. Chen, Chem. Eng. J., 150, 337 (2009).

    Article  CAS  Google Scholar 

  2. E. M. N. Chirwa and Y. T. Wang, Environ. Sci. Technol., 31, 1446 (1997).

    Article  CAS  Google Scholar 

  3. A. Barai and R. D. Engelken, Environ. Sci. Pollution., 5, 121 (2002).

    Article  Google Scholar 

  4. L. E. Eary and D. Rai, Environ. Sci. Technol., 22, 972 (1988).

    Article  CAS  Google Scholar 

  5. G. L. Ghurye, D. A. Clifford and A. R. Tripp, J. Am. Water Works Assoc., 91, 85 (1999).

    CAS  Google Scholar 

  6. D. A. Clifford, Adsorption and ion exchange, in: F.W. Pontius (Ed.), Water Quality and Treatment: A Handbook of Community Water Supplies, McGraw-Hill, New York, 561 (1990).

    Google Scholar 

  7. X. Wang, X. Chen, X. Ma, H. Zheng, M. Ji and Z. Zhang, Chem. Phys. Lett., 384, 391 (2004).

    Article  CAS  Google Scholar 

  8. McGraw-Hill Encyclopedia of Science and Technology New York, 8, 185 (2002).

  9. D. B. Singh, G. S. Gupta, G. Prasad and D. C. Rupainwar, J. Environ. Sci. Health, A28, 1813 (1993).

    CAS  Google Scholar 

  10. G. E. Brown Jr., S. A. Chambers, J. E. Amonette, J.R. Rustad, T. Kendelewicz, C. S. Doyle, D. Grolimund, N. S. Foster-Mills, S. A. Joyce and S. Thevuthasan, J. Conference Abstract, 5, 253 (2000).

    Google Scholar 

  11. O. Ajouyed, C. Hurel, M. Ammari, L. Ben Allal and N. Marmier, J. Hazard. Mater., 174, 616 (2010).

    Article  CAS  Google Scholar 

  12. U. Schwertmann and R.M Cornell, Iron oxide in the laboratory: preparation and characterization, Wiley-VCH Weinheim, Germany, 1 (1991).

    Google Scholar 

  13. T. P. Raming, A. J. A. Winnubst, C. M. Van Kats and A. P. Philipse, J. Colloid Interface Sci., 249, 346 (2002).

    Article  CAS  Google Scholar 

  14. T. Sugimoto, M.M. Khan and A. Muramatsu, Colloids Surf. A: Physicochem. Eng. Aspects, 70, 167 (1993).

    Article  CAS  Google Scholar 

  15. International Institute of Tropical Agriculture (IITA), Selected Methods for Soil and Plant Analysis. Manual Series, 1, 3 (1979).

    Google Scholar 

  16. B. H. Hameed, R.R. Krishni and S. A. Sata, J. Hazard. Mater.., 162, 305 (2009).

    Article  CAS  Google Scholar 

  17. J. S. Noh and J. Schwarz, J. Colloid Interface Sci., 130, 157 (1989).

    Article  CAS  Google Scholar 

  18. M. Tadic, N. Citakovic, M. Panyam, Z. Stojanovic, D. Markoviv and V. Spasojevic, J. Alloys Compds, 509, 7639 (2011).

    Article  CAS  Google Scholar 

  19. H. I. Adegoke and F. A. Adekola, Colloid J., 74, 420 (2012).

    Article  CAS  Google Scholar 

  20. K. Goh, T. Lim, A. Bana and Z. Dong, J. Hazard. Mater., 179, 818 (2010).

    Article  CAS  Google Scholar 

  21. Y. Mamindy-Pajany, C. Hurel, N. Marmier and M. Romeo, Desalination, 281, 93 (2011).

    Article  CAS  Google Scholar 

  22. M. Kosmulski, J. Colloid Interface Sci., 253, 77 (2002).

    Article  CAS  Google Scholar 

  23. M.V. Subbaiah, G. Yuvaraya, Y. Vijaya and A. Krishnaiah, J Taiwan List. Chem. Eng., 42, 965 (2011).

    Article  CAS  Google Scholar 

  24. W. Qin, C. Yang, R. Yi and G. Gao, J. Nanomaterials, DOI:10.11555/2011/159259 (2011).

    Google Scholar 

  25. L. Wang and L. Gao, J. Colloid Interface Sci., 349, 519 (2010).

    Article  CAS  Google Scholar 

  26. S. K. Apte, S. D. Naik, R. S. Sonawane and B. B. Kalew, J. Am. Ceram. Soc., 90, 412 (2007).

    Article  CAS  Google Scholar 

  27. M. Gotic, S. Music, S. Popovic and L. Sekovanic, Croatica, Chem. Acta, 81, 569 (2008).

    CAS  Google Scholar 

  28. H. D. Ruan, R. I. Frost, J. T. Kloprogge and L. Duong, Spectrochimica Acta Part A., 58, 967 (2000).

    Article  Google Scholar 

  29. J. E. Iglesias and C. J. Serna, Miner. Petrogr. Acta, 29A, 363 (1985).

    Google Scholar 

  30. K. Simeonidis, S. Tresintsi, C. Martinez-Boubeta, G. Vourlias, I. Tsiaoussis, G. Stavropoulos, M. Mitrakas and M. Angelakeris, Chem. Eng. J., 168, 1008 (2011).

    Article  CAS  Google Scholar 

  31. J. Hu, I.M. C. Lo and G. Chen, Langmuir, 21, 11173 (2005).

    Article  CAS  Google Scholar 

  32. J. Fang, Z. Gu, D. Gang, C. Liu, E. S. Ilton and B. Deng, Environ. Sci., 44, 4748 (2007).

    Article  Google Scholar 

  33. A. Imai and E. F. Gloyna, Water Res., 24, 1143 (1990).

    Article  CAS  Google Scholar 

  34. P. Srinivas, R. Shashikant and G. S. Munjunatha, J. Environ. Sci. Health, A27, 2227 (1992).

    Google Scholar 

  35. A. Ajmal, A. H. Khan, S. Ahmad and A. Ahmad, Water Res., 32, 3085 (1998).

    Article  CAS  Google Scholar 

  36. B. Yu, Y.H. Zhang, A. Shukla, S. S. Shukla and K. L. Dorris, J. Hazard. Mater., 384, 83 (2001).

    Article  Google Scholar 

  37. C. Namasivayam and R. T. Yamuna, Chemosphere, 30, 561 (1995).

    Article  CAS  Google Scholar 

  38. D. Q. L. Oliveira, M. Goncalves, L. C. A. Oliveira and L. R. G. Guiherme, J. Hazard. Mater., 151, 280 (2008).

    Article  CAS  Google Scholar 

  39. C. H. Weng, Y. C. Sharma and S. H. Chu, J. Hazard. Mater., 155, 65 (2008).

    Article  CAS  Google Scholar 

  40. C. Namasivayam and M.V. Sureshkumar, Bioresour. Technol., 99, 2218 (2008).

    Article  CAS  Google Scholar 

  41. Y. Arai, E. J. Elzinga and D. L. Sparks, J. Colloid Interface Sci., 235, 80 (2001).

    Article  CAS  Google Scholar 

  42. N. Ouazen and M. N. Sahmoune, Int. J. Chem. Rea. Eng. Article, A151, 1 (2010).

    Google Scholar 

  43. U.M. Uysal and I. Arai, J. Hazard. Mater., 149, 482 (2007).

    Article  CAS  Google Scholar 

  44. S. H. Chien and W. R. Clayton, Sci. Soc. Am. J., 44, 265 (1980).

    Article  CAS  Google Scholar 

  45. S. Basha and Z.V. P. Murthy, Process Biochem., 42, 1521 (2007).

    Article  CAS  Google Scholar 

  46. M. I. Temkin and V. Pyzhev, Acta Physiochemica, USSR 12, 327 (1940).

    Google Scholar 

  47. B. Hu, W. Cheng, H. Zhang and S. Yang, J. Nucl. Mater., 406, 263 (2010b).

    Article  CAS  Google Scholar 

  48. T. S. Hsia, S. L. Lo, C. F. Lin and D. Y. Lee, Coll. Surf. A, 85, 1 (1994).

    Article  CAS  Google Scholar 

  49. V. Pakade, E. Cukrowska, J. Darkwa, N. Torto and L. Chimuka, Water SA, 37, 529 (2011).

    CAS  Google Scholar 

  50. N. Goudarzian, P. Ghahramani and S. Hossini, Polym. Int., 36, 61 (1996).

    Article  Google Scholar 

  51. F. A. Miller and C. H. Wilkins, Anal. Chem., 24, 1253 (1952).

    Article  CAS  Google Scholar 

  52. D.G. Strawn and D.L. Sparks, Soc. Sci. Soc. Am. J., 64, 144 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haleemat Iyabode Adegoke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adegoke, H.I., AmooAdekola, F., Fatoki, O.S. et al. Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J. Chem. Eng. 31, 142–154 (2014). https://doi.org/10.1007/s11814-013-0204-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0204-7

Key words

Navigation