Skip to main content
Log in

Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ability to increase the lipid production in microalgae is one of the heavily sought-after ideas to improve the economic feasibility of microalgae-derived transportation fuels for commercial applications. We used the oxidative stress by TiO2 nanoparticles, a well-known photocatalyst, to induce lipid production in microalgae. Chlorella vulgaris UTEX 265 was cultivated under various concentrations of TiO2 ranging from 0.1 to 5 g/L under UV-A illumination. Maximum specific growth rate was affected in responding to TiO2 concentrations. In the presence of UV-A, chlorophyll concentration was decreased at the highest concentration of TiO2 (5 g/L TiO2) by oxidative stress. The fatty acid ethyl ester (FAME) composition analysis suggested that oxidative stress causes the accumulation and decomposition of lipids. The highest FAME productivity was 18.2 g/L/d under low concentrations of TiO2 (0.1 g/L) and a short induction time (two days). The controlled condition of TiO2/UV-A inducing oxidative stress (0.1 g/L TiO2 and two days induction) could be used to increase the lipid productivity of C. vulgaris UTEX 265. Our results show the possibility of modulating the lipid induction process through oxidative stress with TiO2/UV-A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.Y. Chen, K. L. Yeh, R. Aisyah, D. J. Lee and J. S. Chang, Bioresour. Technol., 102, 71 (2011).

    Article  CAS  Google Scholar 

  2. K. Sander and G. S. Murthy, Int. J. Life Cycle Ass., 15, 704 (2010).

    Article  CAS  Google Scholar 

  3. Y. Chisti, Biotechnol. Adv., 25, 294 (2007).

    Article  CAS  Google Scholar 

  4. M. Chen, T. Liu, X. Chen, L. Chen, W. Zhang, J. Wang, L. Gao, Y. Chen and X. Peng, Eur. J. Lipid Sci. Technol., 114, 205 (2012).

    Article  CAS  Google Scholar 

  5. K.K. Sharma, H. Schuhmann and P.M. Schenk, Energies., 5, 1532 (2012).

    Article  CAS  Google Scholar 

  6. A. E. Solovchenko, I. Khozin-Goldberg, S. Didi-Cohen, Z. Cohen and M. N. Merzlyak, Russ J. Plant Physiol., 55, 455 (2008).

    Article  CAS  Google Scholar 

  7. T. Cakmak, P. Angun, Y. E. Demiray, A. D. Ozkan, Z. Elibol and T. Tekinay, Biotechnol. Bioeng., 109, 1947 (2012).

    Article  CAS  Google Scholar 

  8. M. Takagi, Karseno and T. Yoshida, J. Biosci. Bioeng., 101, 223 (2006).

    Article  CAS  Google Scholar 

  9. Z. Li, J. D. Keasling and K. K. Niyogi, Plant Physiol., 158, 313 (2012).

    Article  CAS  Google Scholar 

  10. A. E. Solovchenko, Russ J. Plant Physiol., 59, 167 (2012).

    Article  CAS  Google Scholar 

  11. V. Aruoja, H.C. Dubourguier, K. Kasemets and A. Kahru, Sci. Total Environ., 407, 1461 (2009).

    Article  CAS  Google Scholar 

  12. L.V. Zhukova, J. Kiwi and V.V. Nikandrov, Colloids Surf. B Biointerfaces., 97, 240 (2012).

    Article  CAS  Google Scholar 

  13. S. C. Kim and D. K. Lee, Microchem. J., 80, 227 (2005).

    Article  CAS  Google Scholar 

  14. Y.-S. Chai, J.-C. Lee and B.-W. Kim, Korean J. Chem. Eng., 17, 633 (2000).

    Article  CAS  Google Scholar 

  15. R. J. Miller, S. Bennett, A. A. Keller, S. Pease and H. S. Lenihan, PLoS ONE., 7, e30321 (2012).

    Article  CAS  Google Scholar 

  16. R. Thiruvenkatachari, S. Vigneswaran and I. Moon, Korean J. Chem. Eng., 25, 64 (2008).

    Article  CAS  Google Scholar 

  17. C. Ogino, M. F. Dadjour, Y. Iida and N. Shimizu, J. Hazard. Mater., 153, 551 (2008).

    Article  CAS  Google Scholar 

  18. E. H. Harris, Chlamydomonas sourcebook: Introduction to chlamydomonas and its laboratory use, Academic Press, UK (2009).

    Google Scholar 

  19. R. J. Ritchie, Photosynth Res., 89, 27 (2006).

    Article  CAS  Google Scholar 

  20. S. R. Chae and H. S. Shin, Process Biochem., 42, 193 (2007).

    Article  CAS  Google Scholar 

  21. G. Yoo, W. K. Park, C.W. Kim, Y. E. Choi and J.W. Yang, Bioresour. Technol., 123, 717 (2012).

    Article  CAS  Google Scholar 

  22. B. G. Ryu, J. Kim, K. Kim, Y. E. Choi, J. I. Han and J.W. Yang, Bioresour. Technol., 135, 357 (2013).

    Article  CAS  Google Scholar 

  23. I.M. Sadiq, S. Dalai, N. Chandrasekaran and A. Mukherjee, Ecotoxicol. Environ. Saf., 74, 1180 (2011).

    Article  CAS  Google Scholar 

  24. D. Taloria, S. Samanta, S. Das and C. Pututunda, APCBEE Procedia., 2, 43 (2012).

    Article  CAS  Google Scholar 

  25. P. P. Lamers, C.C. van de Laak, P. S. Kaasenbrood, J. Lorier, M. Janssen, R. C. De Vos, R. J. Bino and R. H. Wijffels, Biotechnol. Bioeng., 106, 638 (2010).

    Article  CAS  Google Scholar 

  26. E. Forjan, I. Garbayo, M. Henriques, J. Rocha, J. M. Vega and C. Vilchez, Mar. Biotechnol. (NY), 13, 366 (2011).

    Article  CAS  Google Scholar 

  27. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert and A. Darzins, Plant J., 54, 621 (2008).

    Article  CAS  Google Scholar 

  28. A. Kumar, A.K. Pandey, S. S. Singh, R. Shanker and A. Dhawan, Free Radic Biol. Med., 51, 1872 (2011).

    Article  CAS  Google Scholar 

  29. I. Rodea-Palomares, K. Boltes, F. Fernandez-Pinas, F. Leganes, E. Garcia-Calvo, J. Santiago and R. Rosal, Toxicol. Sci., 119, 135 (2011).

    Article  CAS  Google Scholar 

  30. M. Mortimer, K. Kasemets, M. Vodovnik, R. Marinsek-Logar and A. Kahru, Environ. Sci. Technol., 45, 6617 (2011).

    Article  CAS  Google Scholar 

  31. H. K. Ledford and K. K. Niyogi, Plant Cell. Environ., 28, 1037 (2005).

    Article  CAS  Google Scholar 

  32. J. Ji, Z. Long and D. Lin, Chem. Eng. J., 170, 525 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Won Yang.

Additional information

This paper is dedicated to commemorate Prof. Ji-Won Yang (KAIST) on his retirement.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, N.K., Lee, B., Choi, GG. et al. Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J. Chem. Eng. 31, 861–867 (2014). https://doi.org/10.1007/s11814-013-0258-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0258-6

Keywords

Navigation