Skip to main content
Log in

The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology

  • Polymer, Industrial Chemistry, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We studied the capability of electrocentrifuge-spinning (ECS) method for generating highly aligned nanofiber. First, the degree of nanofiber alignment (DNA) produced by ECS was compared with that of rotating drum (RD) method and ECS superiority was demonstrated. Then central composite design (CCD) and response surface methodology (RSM) was used for optimization of operating conditions. The critical factors selected for the examination were voltage, polymer concentration, collector diameter and spinneret rotational speed. To design the required experiments at the settings of independent parameters, RSM was applied. A total of 30 experiments were accomplished towards the construction of a quadratic model for target variable. Using this quadratic model, the influence of aforementioned variables was discussed on DNA. The best operating condition for attaining the maximum value of DNA was the applied voltage of 20.19 kV, polymer concentration of 17.44wt%, collector diameter of 40.76 cm, and rotational speed of 2680.10 rpm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  2. N. Bhardwaj and S. C. Kundu, Biotechnol. Adv., 28, 325 (2010).

    Article  CAS  Google Scholar 

  3. V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 28(1), 114 (2011).

    Article  CAS  Google Scholar 

  4. M. Ziabari, V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 25(4), 923 (2008).

    Article  CAS  Google Scholar 

  5. M. Kanafchian, M. Valizadeh and A. K. Haghi, Korean J. Chem. Eng., 28(2), 428 (2011).

    Article  CAS  Google Scholar 

  6. D. H. Reneker, A. L. Yarin, H. Fong and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  7. A. L. Yarin, S. Koombhongse and D. H. Reneker, J. Appl. Phys., 89, 3018 (2001).

    Article  CAS  Google Scholar 

  8. H. Wu, D. Lin, R. Zhang and W. Pan, J. Am. Ceram. Soc., 91, 656 (2008).

    Article  CAS  Google Scholar 

  9. C. Pan, H. Wu, C. Wang, B. Wang, L. Zhang, Z. Cheng, P. Hu, W. Pan, Z. Zhou, X. Yang and J. Zhu, Adv. Mater., 20, 1644 (2008).

    Article  CAS  Google Scholar 

  10. X. Lu, W. Zhang, C. Wang, T. C. Wen and Y. Wei, Prog. Polym. Sci., 36, 671 (2011).

    Article  CAS  Google Scholar 

  11. S.Y. Chew, R. Mi, A. Hoke and K.W. Leong, Biomaterials, 29, 653 (2008).

    Article  CAS  Google Scholar 

  12. S. H. Lim, X.Y. Liu, H. Song, K. J. Yarema and H. Q. Mao, Biomaterials, 28, 1967 (2007).

    Article  Google Scholar 

  13. B. S. Jha, R. J. Colello, J. R. Bowman, S. A. Sell, K. D. Lee, J.W. Bigbee, G. L. Bowlin, W.N. Chow, B. E. Mathern and D.G. Simpson, Acta Biomater., 7, 203 (2011).

    Article  CAS  Google Scholar 

  14. C.Y. Xu, R. Inai, M. Kotaki, S. Ramakrishna, Biomaterials, 25, 877 (2004).

    Article  CAS  Google Scholar 

  15. S.Y. Gu, Q.L. Wu, J. Ren and G. J. Vancso, Macromol. Rapid Commun., 26, 716 (2005).

    Article  CAS  Google Scholar 

  16. X. Wang, K. Zhang, M. Zhu, B. S. Hsiao and B. Chu, Macromol. Rapid Commun., 29, 826 (2008).

    Article  CAS  Google Scholar 

  17. G. Mathew, J. P. Hong, J. M. Rhee, D. J. Leo and C. Nah, J. Appl. Polym. Sci., 101, 2017 (2006).

    Article  CAS  Google Scholar 

  18. J. A. Matthews, G. E. Wnek, D.G. Simpson and G. L. Bowlin, Biomacromolecules, 3, 232 (2002).

    Article  CAS  Google Scholar 

  19. E. D. Boland, G. E. Wnek, D.G. Simpson, K. J. Palowski and G. L. Bowlin, J. Macromol. Sci., Pure Appl. Chem. A, 38, 1231 (2001).

    Article  Google Scholar 

  20. A. Theron, E. Zussman and A. L. Yarin, Nanotechnology, 12, 384 (2001).

    Article  Google Scholar 

  21. D. Li, Y. Wang and Y. Xia, Nano Lett., 3, 1167 (2003).

    Article  CAS  Google Scholar 

  22. R. Jalili, M. Morshed and S. A. Hosseini-Ravandi, J. Appl. Polym. Sci., 101, 4350 (2006).

    Article  CAS  Google Scholar 

  23. R. Jalili, S. A. Hosseini-Ravandi and M. Morshed, Iranian J. Polym. Sci. Technol., 4, 241 (2006).

    Google Scholar 

  24. A. M. Afifi, H. Nakajima, H. Yamane, Y. Kimura and S. Nakano, Macromol. Mater. Eng., 294, 658 (2009).

    Article  CAS  Google Scholar 

  25. M.B. Bazbouz and G. K. Stylios, J. Appl. Polym. Sci., 107, 3023 (2008).

    Article  CAS  Google Scholar 

  26. L. S. Carnell, E. J. Siochi, N.M. Holloway, R.M. Stephens, C. Rhim, L. E. Niklason and R. L. Clark, Macromolecules, 41, 5345 (2008).

    Article  CAS  Google Scholar 

  27. F. Dabirian, S.A. H. Ravandi and A. R. Pishevar, Curr. Nanosci., 6, 545 (2010).

    Article  Google Scholar 

  28. F. Dabirian, S. A. H. Ravandi, A.R. Pishevar and R.A. Abuzade, J. Electrostat., 69, 540 (2011).

    Article  Google Scholar 

  29. J. Kwak, Int. J. Mach. Tool Manuf., 45, 327 (2005).

    Article  Google Scholar 

  30. D. Kim, Y. Song and Y. Park, Korean J. Chem. Eng., 30(3), 664 (2013).

    Article  CAS  Google Scholar 

  31. M. Ziabari, V. Mottaghitalab and A. K. Haghi, Korean J. Chem. Eng., 27(1), 340 (2010).

    Article  CAS  Google Scholar 

  32. B. Rahmanian, M. Pakizeh and A. Maskooki, Korean J. Chem. Eng., 29(6), 804 (2012).

    Article  CAS  Google Scholar 

  33. M. Kincl, S. Turk and F. Vrecer, Int. J. Pharm., 291, 39 (2005).

    Article  CAS  Google Scholar 

  34. V. Gunaraj, N. Murugan, J. Mater. Process. Technol., 88, 266 (1999).

    Article  Google Scholar 

  35. S. A. Hosseini Ravandi and K. Toriumi, Text. Res. J., 65, 676 (1995).

    Article  Google Scholar 

  36. D. C. Montgomery, Design and analysis of experiments, 6th Ed., Wiley, Singapore (2001).

    Google Scholar 

  37. G. E. P. Box and J. S. Hunter, Ann. Math. Stat., 28, 195 (1957).

    Article  Google Scholar 

  38. D. Obeng, S. Morrell and T. Napier, Int. J. Miner. Process., 769, 181 (2005).

    Article  Google Scholar 

  39. C. Zhang, X. Yuan, L. Wu, Y. Han and J. Sheng, Eur. Polym. J., 41, 423 (2005).

    Article  CAS  Google Scholar 

  40. M. Demir, I. Yilgor, E. Yilgor and B. Erman, Polymer, 43, 3303 (2002).

    Article  CAS  Google Scholar 

  41. D. Reneker and L. Chun, Nanotechnology, 7, 216 (1996).

    Article  CAS  Google Scholar 

  42. A. Haghi and M. Akbari, Phys. Status. Solidi., 204, 1830 (2007).

    Article  CAS  Google Scholar 

  43. C. Ki, D. Baek, K. Gang, K. Lee, I. Um and Y. Park, Polymer, 46, 5094 (2005).

    Article  CAS  Google Scholar 

  44. J. Deitzel, J. Kleinmeyer, D. Harris and N. Tan, Polymer, 42, 261 (2001).

    Article  CAS  Google Scholar 

  45. H. Liu and Y. Hsieh, J. Polym. Sci. B-Polym. Phys., 40, 2119 (2002).

    Article  CAS  Google Scholar 

  46. M. Mckee, G. Wilkes, R. Colby and T. Long, Macromolecules, 37, 1760 (2004).

    Article  CAS  Google Scholar 

  47. Y. Ryu, H. Kim, K. Lee, H. Park and D. Lee, Eur. Polym. J., 39, 1883 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Khamforoush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamforoush, M., Asgari, T., Hatami, T. et al. The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method : Modeling and optimization by response surface methodology. Korean J. Chem. Eng. 31, 1695–1706 (2014). https://doi.org/10.1007/s11814-014-0099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0099-y

Keywords

Navigation