Skip to main content
Log in

Reliable modeling of discharge process for adsorbed natural gas storage tanks

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Natural gas consumption has doubled in the last fifteen years. Among all storage techniques, adsorbed natural gas (ANG) provides a reliable vehicle for safe utilization of natural gas. Despite all favorable characteristics of the ANG process, thermal adverse effects during charge and discharge processes are the most challenging issues facing adsorbed natural gas applications, especially for automotive usage. Mathematical modeling of an ANG tank can provide a reliable method to analyze and solve such problems. A robust and lumped model is presented to mimic the discharge process of an ANG tank storing pure component. The proposed model is very convenient compared to other available conventional models that require extensive computational efforts. Two experimental measurements and two simulation data sets (borrowed from literature) are recruited to validate the model predictions. The simulation results indicate proper agreement between the proposed model predictions and the validation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Chang and O. Talu, Appl. Therm. Eng., 16, 359 (1996).

    Article  CAS  Google Scholar 

  2. J. P. B. Mota, A. E. Rodrigues, E. Saatdjian and D. Tondeur, Carbon, 35, 1259 (1997).

    Article  CAS  Google Scholar 

  3. Z. Zhou, Appl. Therm. Eng., 17, 1099 (1997).

    Article  CAS  Google Scholar 

  4. J. A. F. MacDonald and D. F. Quinn, Fuel, 77, 61 (1998).

    Article  CAS  Google Scholar 

  5. L. L. Vasiliev, L. E. Kanonchik, D. A. Mishkinis and M. I. Rabetsky, Int. J. Therm. Sci., 39, 1047 (2000).

    Article  CAS  Google Scholar 

  6. K. Inomata, K. Kanazawa, Y. Urabe, H. Hosono and T. Araki, Carbon, 40, 87 (2002).

    Article  CAS  Google Scholar 

  7. J. P.B. Mota, I. A. A. C. Esteves and M. Rostam-Abadi, Comput. Chem. Eng., 28, 2421 (2004).

    Article  CAS  Google Scholar 

  8. M. Bastos-Neto, A. Torres, D. Azevedo and C. Cavalcante, Adsorpt., 11, 147 (2005).

    Article  CAS  Google Scholar 

  9. R. Basumatary, P. Dutta, M. Prasad and K. Srinivasan, Carbon, 43, 541 (2005).

    Article  CAS  Google Scholar 

  10. O. Pupier, V. Goetz and R. Fiscal, Chem. Eng. Process., 44, 71 (2005).

    Article  CAS  Google Scholar 

  11. X.D. Yang, Q.R. Zheng, A. Z. Gu and X. S. Lu, Appl. Therm. Eng., 25, 591 (2005).

    Article  CAS  Google Scholar 

  12. K. S. Walton, C. L. Cavalcante Jr. and M. D. LeVan, J. Chem. Eng., 23, 555 (2006).

    CAS  Google Scholar 

  13. D. C. S. Azevedo, J. C. S. Araújo, M. Bastos-Neto, A. E. B. Torres, E. F. Jaguaribe and C. L. Cavalcante, Micropor. Mesopor. Mater., 100, 361 (2007).

    Article  CAS  Google Scholar 

  14. F. N. Ridha, R.M. Yunus, M. Rashid and A. F. Ismail, Exp. Therm. Fluid. Sci., 32, 14 (2007).

    Article  CAS  Google Scholar 

  15. F. N. Ridha, R. M. Yunus, M. Rashid and A. F. Ismail, Fuel Process. Technol., 88, 349 (2007).

    Article  CAS  Google Scholar 

  16. F. N. Ridha, R. M. Yunus, M. Rashid and A. F. Ismail, Appl. Therm. Eng., 27, 55 (2007).

    Article  CAS  Google Scholar 

  17. H. Najibi, A. Chapoy and B. Tohidi, Fuel, 87, 7 (2008).

    Article  CAS  Google Scholar 

  18. S.C. Hirata, P. Couto, L.G. Lara and R.M. Cotta, Int. J. Therm. Sci., 48, 1176 (2009).

    Article  CAS  Google Scholar 

  19. A. Sáez and M. Toledo, Appl. Therm. Eng., 29, 2617 (2009).

    Article  Google Scholar 

  20. J. C. Santos, F. Marcondes and J. M. Gurgel, Appl. Therm. Eng., 29, 2365 (2009).

    Article  CAS  Google Scholar 

  21. M. J.M. da Silva and L. A. Sphaier, Appl. Energy, 87, 1572 (2010).

    Article  Google Scholar 

  22. J. de Joode and Ö. Özdemir, Energy Policy, 38, 5817 (2010).

    Article  Google Scholar 

  23. W. Zhou, Chem. Rec., 10, 200 (2010).

    Article  CAS  Google Scholar 

  24. J. M. Ejarque, Energy Econ., 33, 44 (2011).

    Article  Google Scholar 

  25. D. S. Jurumenha and L. A. Sphaier, Appl. Therm. Eng., 31, 2458 (2011).

    Article  CAS  Google Scholar 

  26. K. A. Rahman, W. S. Loh, A. Chakraborty, B. B. Saha, W.G. Chun and K. C. Ng, Appl. Therm. Eng., 31, 1630 (2011).

    Article  CAS  Google Scholar 

  27. R. B. Rios, M. Bastos-Neto, M. R. Amora Jr., A. E. B. Torres, D. C. S. Azevedo and C. L. Cavalcante Jr., Fuel, 90, 113 (2011).

    Article  CAS  Google Scholar 

  28. R. P. Sacsa Diaz and L. A. Sphaier, Int. J. Therm. Sci., 50, 599 (2011).

    Article  Google Scholar 

  29. N. Kim, J.H. Lee, Y. S. Cho and W. Chun, Energy, 35, 2717 (2010).

    Article  CAS  Google Scholar 

  30. X. Lang, Sh. Fan and Y. Wang, J. Nat. Gas. Chem., 19, 203 (2010).

    Article  CAS  Google Scholar 

  31. J. P. Holman, Heat transfer, Tenth Ed., McGraw Hill Higher Education, New York (2009).

    Google Scholar 

  32. J. S. Goodling, R. I. Vachon, W. S. Stelpflug, S. J. Ying and M. S. Khader, Powder Technol., 35, 23 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Shahsavand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorashadizadeh, M., Shahrak, M.N. & Shahsavand, A. Reliable modeling of discharge process for adsorbed natural gas storage tanks. Korean J. Chem. Eng. 31, 1994–2002 (2014). https://doi.org/10.1007/s11814-014-0100-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0100-9

Keywords

Navigation