Skip to main content
Log in

Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Yang, X. Wang and Y. Wang, J. Ind. Eng. Chem., 13, 485 (2007).

    CAS  Google Scholar 

  2. N. Lilichenko, R. D. Maksimov, J. Zicans, R. M. Meri and E. Plume, Mech. Compos. Mater., 44, 45 (2008).

    Article  CAS  Google Scholar 

  3. W. Amass, A. Amass and B. Tighe, Polym. Int., 47, 89 (1998).

    Article  CAS  Google Scholar 

  4. J. Y. Nam, S. S. Ray and M. Okamoto, Macromolecules, 36, 7126 (2003).

    Article  CAS  Google Scholar 

  5. L. Lin, H. Liu and N. Yu, J. Appl. Polym. Sci., 106, 260 (2007).

    Article  CAS  Google Scholar 

  6. S. Singh and S. S. Ray, J. Nanosci. Nanotechnol., 7, 2596 (2007).

    Article  CAS  Google Scholar 

  7. J. Chang, Y. U. An and G. S. Sur, J. Polym. Sci.:Part B: Polymer Physics, 41, 94 (2002).

    Article  CAS  Google Scholar 

  8. V. Krikorian and D. J. Pochan, Chem. Mater., 15, 4317 (2003).

    Article  CAS  Google Scholar 

  9. G. Bang and S. W. Kim, J. Ind. Eng. Chem., 18, 1063 (2012).

    Article  CAS  Google Scholar 

  10. M. Iotti, P. Fabbri, M. Messori, F. Pilati and P. Fava, J. Polym. Environ., 17, 10 (2009).

    Article  CAS  Google Scholar 

  11. H. Kim, A. A. Abdala and C. W. Mascosko, Macromolecules, 43, 6515 (2010).

    Article  CAS  Google Scholar 

  12. Y. F. Zhao, M. Xiao, S. J. Wang, X. C. Ge and Y. Z. Meng, Compos. Sci. Technol., 67, 2528 (2007).

    Article  CAS  Google Scholar 

  13. Y. Lee, D. Kim, J. Seo, H. Han and S. B. Khan, Polym. Int., 9, 1386 (2013).

    Article  CAS  Google Scholar 

  14. H. Huang, P. Ren, J. Chen, W. Zhang, X. Ji and Z. Li, J. Membr. Sci., 409, 156 (2012).

    Article  CAS  Google Scholar 

  15. J. Wang, C. Xu, H. Hu, L. Wan, R. Chen, H. Zheng, F. Liu, M. Zhang, X. Shang and X. Wang, J. Nanopart. Res., 13, 869 (2011).

    Article  CAS  Google Scholar 

  16. I. Tseng, Y. liao, J. Chiang and M. Tsai, Mater. Chem. Phys., 136, 247 (2012).

    Article  CAS  Google Scholar 

  17. H. Kim, Y. Miura and C. W. Mascosko, Chem. Mater., 22, 3441 (2010).

    Article  CAS  Google Scholar 

  18. J. Yang, L. Bai, G. Feng, X. Yang, M. Lv, C. Zhang, H. Hu and X. Wang, Ind. Eng. Chem. Res., 52, 16745 (2013).

    Article  CAS  Google Scholar 

  19. A. M. Pinto, J. Cabral, D. A. Pacheco Tanaka, A. M. Mendes and F. D. Magalhaes, Polym. Int., 62, 33 (2013).

    Article  CAS  Google Scholar 

  20. H. Wang and Z. Qiu, Thermochim. Acta, 527, 40 (2012).

    Article  CAS  Google Scholar 

  21. H. Wang and Z. Qiu, Thermochim. Acta, 526, 229 (2011).

    Article  CAS  Google Scholar 

  22. J. Z. Xu, T. Chen, C. L. Yang, Z. M. Li, Y. M. Mao, B. Q. Zeng and B. S. Hsiao, Macromolecules, 43, 5000 (2010).

    Article  CAS  Google Scholar 

  23. W. S. Hummers and R. E. Offman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  24. S.W. Kim and H. M. Choi, High Perform. Polym., In Press DOI:10.1177/ 0954008314557051.

  25. X. Zhao, Q. Zhang and D. Chen, Macromolecules, 43, 2357 (2010).

    Article  CAS  Google Scholar 

  26. S. Pei and H. M. Cheng, Carbon, 50, 3210 (2012).

    Article  CAS  Google Scholar 

  27. D. Zhou, Q. Y. Cheng and B. H. Han, Carbon, 49, 3920 (2011).

    Article  CAS  Google Scholar 

  28. W. S. Chow and S. K. Lok, J. Therm. Anal. Cal., 95, 627 (2009).

    Article  CAS  Google Scholar 

  29. S. W. Kim, Korean J. Chem. Eng., 28, 298 (2011).

    Article  CAS  Google Scholar 

  30. C. Chan and I. Chu, Polymer, 42, 6089 (2001).

    Article  CAS  Google Scholar 

  31. B. Finnigan, D. Martin, P. Halley, R. Truss and K. Campbell, Polymer, 45, 2249 (2004).

    Article  CAS  Google Scholar 

  32. X. Shi and Z. Gan, Eur. Polym. J., 43, 4852 (2007).

    Article  CAS  Google Scholar 

  33. D. Wang, J. Yu, J. Zhang, J. He and J. Zhang, Compos. Sci. Technol., 85, 83 (2013).

    Article  CAS  Google Scholar 

  34. J. Bian, H. L. Lin, F. X. He, L. Wang, X. W. Wei, I. Chang and E. Sancaktar, Eur. Polym. J., 49, 1406 (2013).

    Article  CAS  Google Scholar 

  35. S. W. Kim and S. H. Cha, J. Appl. Polym. Sci., 131, 40289 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.W., Choi, H.M. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films. Korean J. Chem. Eng. 33, 330–336 (2016). https://doi.org/10.1007/s11814-015-0142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0142-7

Keywords

Navigation