Skip to main content
Log in

Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A facile synthesis of graphene oxide-zinc oxide nanocomposite (GO-ZnO) was performed by using wet chemical method of graphene oxide and zinc acetate precursors. The nanocomposite was characterized and intercalated with Raman spectroscopy, FE-SEM, TEM, SAED and EDAX. The crystalline nature was studied from P-XRD, and surface area of the sample was analyzed by BET. The chemical composition was explained in the light of XPS phenomenon. The photo electron-excitation (PL) studies were conducted for understanding the photocatalytic mechanism, and photocatalytic degradation of methyl orange was studied by using UV-VIS spectrophotometer. We investigated the photocatalytic activity involving GO-ZnO nanocomposite besides checking the re-stability of the composite. Significant high-performance photocatalytic activity of GO-ZnO nanocomposite was exhibited on methyl orange degradation under solar light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Soylak and N. D. Erdogan, J. Harzard. Mater., 137, 1035 (2006).

    Article  CAS  Google Scholar 

  2. O. D. Uluozlu, M. Tuzen, D. Mendil and M. Soylak, J. Harzard. Mater., 176, 1032 (2010).

    Article  CAS  Google Scholar 

  3. J. Qin, X. Zhang, Y. Xue, N. Kittiwattanothai, P. Kongsittikul, N. Rodthongkum, S. Limpanart, M. Ma and R. Liu, Appl. Surf. Sci., 321, 226 (2014).

    Article  CAS  Google Scholar 

  4. M. Seredych, O. Mabayoje and T. J. Bandosz, J. Phys. Chem. C, 116, 2527 (2012).

    Article  CAS  Google Scholar 

  5. M. Seredych, O. Mabayoje, M. M. Kolesnnik, V. Krstic and T. J. Bandosz, J. Mater. Chem., 22, 7970 (2012).

    Article  CAS  Google Scholar 

  6. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko and A. Fujishima, Langmuir, 18, 7777 (2002).

    Article  CAS  Google Scholar 

  7. K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater., 21, 2233 (2009).

    Article  CAS  Google Scholar 

  8. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature, 438, 197 (2005).

    Article  CAS  Google Scholar 

  9. J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth, Nature, 446, 60 (2007).

    Article  CAS  Google Scholar 

  10. M. I. Katsnelson and K. S. Novoselov, Solid State Commun., 143, 3 (2007).

    Article  CAS  Google Scholar 

  11. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 6, 652 (2007).

    Article  CAS  Google Scholar 

  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science, 306, 666 (2004).

    Article  CAS  Google Scholar 

  13. G. Srinivas, J. W. Burress, J. Ford and T. Yildirim, J. Mater. Chem., 21, 1323 (2011).

    Article  Google Scholar 

  14. M. Seredych, O. Mabayoje and T. J. Bandosz, Langmuir, 28, 1337 (2012).

    Article  CAS  Google Scholar 

  15. M. Seredych, O. Mabayoje and T. J. Bandosz, J. Phys. Chem. C., 116, 2527 (2012).

    Article  CAS  Google Scholar 

  16. M. J. Allen, V. C. Tung and R. B. Kaner, Chem. Rev., 110, 132 (2010).

    Article  CAS  Google Scholar 

  17. S. T. Yang, Y. Chang, H. Wang, G. Liu, S. Chen, Y. Wang, Y. Liu and A. Cao, J. Colloid Interface Sci., 357, 122 (2010).

    Article  Google Scholar 

  18. V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang and K. S. Kim, ACS Nano, 4, 3979 (2010).

    Article  CAS  Google Scholar 

  19. V. Chandra and K. S. Kim, Chem. Commun., 47, 3942 (2011).

    Article  CAS  Google Scholar 

  20. C. Petit, M. Seredych and T. J. Bandosz, J. Mater. Chem., 19, 9176 (2009).

    Article  CAS  Google Scholar 

  21. M. Seredych and T. J. Bandosz, Chem. Eng. J., 166, 1032 (2011).

    Article  CAS  Google Scholar 

  22. M. Seredych and T. J. Bandosz, J. Phys. Chem. C, 114, 14552 (2010).

    Article  CAS  Google Scholar 

  23. S. Bashkova and T. J. Bandosz, J. Ind. Eng. Chem. Res., 48, 10884 (2009).

    Article  CAS  Google Scholar 

  24. M. Seredych, O. Mabayoje and T. J. Bandosz, Langmuir, 28, 1337 (2012).

    Article  CAS  Google Scholar 

  25. Y. Matsuo, Y. Nishino, T. Fukutsuka and Y. Sugie, Carbon, 46, 1162 (2008).

    Article  CAS  Google Scholar 

  26. K. Morishige and T. Hamada, Langmuir, 21, 6277 (2005).

    Article  CAS  Google Scholar 

  27. Y. Zhao, H. Ding and Q. Zhong, Appl. Surf. Sci., 258, 4301 (2012).

    Article  CAS  Google Scholar 

  28. B. Levasseur, C. Petit and T. J. Bandosz, ACS Appl. Mater. Interfaces, 2, 3606 (2010).

    Article  CAS  Google Scholar 

  29. C. Petit and T. J. Bandosz, Adv. Funct. Mater., 20, 111 (2010).

    Article  CAS  Google Scholar 

  30. X. Zan, Z. Fang, J. Wu, F. Xiao, F. Huo and H. Duan, Biosens. Bioelectron., 49, 71 (2013).

    Article  CAS  Google Scholar 

  31. L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, Nano Lett., 12, 1806 (2012).

    Article  CAS  Google Scholar 

  32. M. Zhu, P. Chen and M. Liu, ACS Nano, 5, 4529 (2011).

    Article  CAS  Google Scholar 

  33. Y. Bu, Z. Chen, W. Li and B. Hou, ACS Appl. Mater. Interfaces, 5, 12361 (2013).

    Article  CAS  Google Scholar 

  34. Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu and H. Wang, ACS Appl. Mater. Interfaces, 6, 2791 (2014).

    Article  CAS  Google Scholar 

  35. S. Ameen, M. Akhtar, M. Song and H. S. Shin, ACS Appl. Mater. Interfaces, 4, 4405 (2012).

    Article  CAS  Google Scholar 

  36. J. Y. Li and H. Li, Nanoscale Research Lett., 4, 165 (2009).

    Article  CAS  Google Scholar 

  37. J. Lee, S. C. Nam and Y. Tak, Korean J. Chem. Eng., 22, 161 (2005).

    Article  CAS  Google Scholar 

  38. F. Peng, H. Zhu, H. Wang and H. Yu, Korean J. Chem. Eng., 24(6), 1022 (2007).

    Article  CAS  Google Scholar 

  39. E. Hong, T. Choi and J. H. Kim, Korean J. Chem. Eng., 32(3), 424 (2015).

    Article  CAS  Google Scholar 

  40. S. P. Chaudhari, A. B. Bodade and G. Niranjanrao Chaudhari, Korean J. Chem. Eng., 30(11), 2001 (2013).

    Article  CAS  Google Scholar 

  41. T. Hirakawa and P. V. Kamat, J. Am. Chem. Soc., 127, 3928 (2005).

    Article  CAS  Google Scholar 

  42. V. Subramanian, E. E. Wolf and P. V. Kamat, J. Am. Chem. Soc., 126, 4943 (2004).

    Article  CAS  Google Scholar 

  43. C. Zhang, J. Zhang, Y. Su, M. Xu, Z. Yang and Y. Zhang, Physica E, 56, 251 (2014).

    Article  CAS  Google Scholar 

  44. B. Li, T. Liu, Y. Wang and Z. Wang, J. Colloid Interface Science, 377, 114 (2012).

    Article  CAS  Google Scholar 

  45. S. R. Kim, M. K. Parvez and M. Chowalla, Chem. Phys. Lett., 483, 124 (2009).

    Article  CAS  Google Scholar 

  46. X. Zhou, T. Shi and H. Zhou, Appl. Surf. Sci., 258, 6204 (2012).

    Article  CAS  Google Scholar 

  47. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  48. Y. Bu, Z. Chen, W. Li and B. Hou, ACS Appl. Mater. Interfaces, 5, 12361 (2013).

    Article  CAS  Google Scholar 

  49. X. Y. Ye, Y. M. Zhou, Y. Q. Sun, J. Chen and Z. Q. Wang, J. Nanopart. Res., 11, 1159 (2009).

    Article  CAS  Google Scholar 

  50. J. Guo, L. L. Ren, R. Y. Wang, C. Zhang, Y. Yang and T. X. Liu, Composites. Part B, 42, 2130 (2011).

    Article  Google Scholar 

  51. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prudhomme, I. A. Aksay and R. Car, Nano Lett., 8, 36 (2008).

    Article  CAS  Google Scholar 

  52. B. Adhikari, A. Biswas and A. Banerjee, Langmuir, 28, 1460 (2012).

    Article  CAS  Google Scholar 

  53. F. Wang and K. Zhang, J. Mol. Catal. A. Chem., 345, 101 (2011).

    Article  CAS  Google Scholar 

  54. E. P. Gao, W. Z. Wang, M. Shang and J. H. Xu, Phys. Chem., 13, 2887 (2011).

    CAS  Google Scholar 

  55. M. Ahmad, E. Ahmed, Z. L. Hong, J. F. Xu, N. R. Khalid, A. Elhissi and W. Ahmed, Appl. Surf. Sci., 274, 273 (2013).

    Article  CAS  Google Scholar 

  56. V. H. Luan, H. N. Tien and S. H. Hur, J. Colloid Interface Sci., 437, 181 (2015).

    Article  CAS  Google Scholar 

  57. M. Ahmad, E. Ahmed, Z. L. Hong, N. R. Khalid, W. Ahmed and A. Elhissi, J. Alloys Compd., 577, 717 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adinarayana Reddy Somala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posa, V.R., Annavaram, V., Koduru, J.R. et al. Graphene-ZnO nanocomposite for highly efficient photocatalytic degradation of methyl orange dye under solar light irradiation. Korean J. Chem. Eng. 33, 456–464 (2016). https://doi.org/10.1007/s11814-015-0145-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0145-4

Keywords

Navigation