Skip to main content
Log in

Combustion of boron particles coated with an energetic polymer material

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Elemental boron has attracted considerable attention as a potential high energetic material for explosives and propellants. However, its use has been hindered by its high vaporization temperature and surface oxide layer. In this study, boron particles were coated with glycidyl azide polymer (GAP) to improve their combustion characteristics. The coated particles were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy. XPS performed before and after Ar+ ion sputtering confirmed that the azide (−N3) group of GAP was positioned at the proximity of the boron surface. In addition, B@GAP particles could be decorated with metallic Ag (∼10 nm) nanoparticles. The combustion characteristics were examined using a newly designed pre-heated (1,800 K) drop tube furnace and a high speed camera. Two stages of combustion were observed for a dust cloud of GAP-coated boron particles. The burning time was estimated to be approximately 37.5 msec.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. X. Hu, Z. X. Xia, W. H. Zhang, Z. B. Fang, D.Q. Wang and L.Y. Huang, Int. J. Aerospace Eng., 2012, 160620 (2012).

    Article  Google Scholar 

  2. M. Trunov, V. Hoffmann, M. Schoenitz and E. L. Dreizin, J. Propul. Power, 24, 184 (2008).

    Article  CAS  Google Scholar 

  3. R. J. P. Lima, C. Dubois, O. Mader, R. Stowe and S. Ringuette, Int. J. Energetic Mater. Chem. Prop., 9, 437 (2010).

    Article  Google Scholar 

  4. R.O. Foelsche, R. L. Burton and H. Krier, Combust. Flame, 117, 32 (1999).

    Article  CAS  Google Scholar 

  5. J. Xi, J. Liu, Y. Wang, D. Liang, H. Li and J. Zhou, Propellants Explos. Pyrotech., 39, 844 (2014).

    Article  CAS  Google Scholar 

  6. C.-J. Tang, Y. J. Lee and T.A. Litzinger, Combust. Flame, 117, 244 (1999).

    Article  CAS  Google Scholar 

  7. S. Mohan, M. A. Trunov and E. L. Dreizin, J. Propul. Power, 24, 199 (2008).

    Article  CAS  Google Scholar 

  8. B. Van Devener, J.P.L. Perez, J. Jankovich and S.L. Anderson, Energy Fuels, 23, 6111 (2009).

    Article  Google Scholar 

  9. D. Meinköhn, Combust. Sci. Technol., 176, 1493 (2004).

    Article  Google Scholar 

  10. B. Hussmann and M. Pfitzner, Combust. Flame, 157, 803 (2010).

    Article  CAS  Google Scholar 

  11. J.-F. Xi, J.-Z. Liu and Y. Wang, J. Solid Rocket Technol., 36, 654 (2013).

    CAS  Google Scholar 

  12. J.-Z. Liu, J.-F. Xi and W.-J. Yang, Acta Astronaut., 96, 89 (2014).

    Article  CAS  Google Scholar 

  13. M.D. Clemenson, S. Johnson, H. Krier and N. Glumac, Propellants Explos. Pyrotech., 39, 454 (2014).

    Article  CAS  Google Scholar 

  14. X. Jiang, M. Trunov, M. Schoenitz, R. Dave and E. L. Dreizin, J. Alloys Compd., 478, 246 (2009).

    Article  CAS  Google Scholar 

  15. C. L. Yeh and K. K. Kuo, Prog. Energy Combust. Sci., 22, 511 (1996).

    Article  CAS  Google Scholar 

  16. I.M. Shyu and T. K. Liu, Combust. Flame, 100, 634 (1995).

    Article  CAS  Google Scholar 

  17. B.V. Devener, J. P. L. Perez and S. L. Anderson, J. Mater. Res., 24, 3462 (2009).

    Article  Google Scholar 

  18. C. Hu, X. Guo, Y. Jing, J. Chen, C. Zhang and J. Huang, J. Appl. Polym. Sci., 131, 40636 (2014).

    Google Scholar 

  19. B. S. Min, Y.C. Park and J.C. Yoo, Propellants Explos. Pyrotech., 37, 59 (2012).

    Article  CAS  Google Scholar 

  20. B. S. Min and S.W. Ko, Macromol. Res., 15, 225 (2007).

    Article  CAS  Google Scholar 

  21. S. Brochu and G. Ampleman, Macromolecules, 29, 5539 (1996).

    Article  CAS  Google Scholar 

  22. J.-S. You, J.-O. Kweon, S.-C. Kang and S.-T. Noh, Macromol. Res., 18, 1226 (2000).

    Article  Google Scholar 

  23. T. Wang, S. Li, B. Yang, C. Huang and Y. Li, J. Phys. Chem. B, 111, 2449 (2007).

    Article  CAS  Google Scholar 

  24. K. Selim, S. Ozkar and L. Yilmaz, J. Appl. Polym. Sci., 77, 538 (2000).

    Article  CAS  Google Scholar 

  25. G. Xanthopoulou, A. Marinou, G. Vekinis, A. Lekatou and M. Vardavoulias, Coatings, 4, 231 (2014).

    Article  Google Scholar 

  26. F. Iskandar, Adv. Powder Technol., 20, 283 (2009).

    Article  CAS  Google Scholar 

  27. M. Sakamoto, M. Fujistuka and T. Majima, J. Photochem. Photobiol. C, 10, 33 (2009).

    Article  CAS  Google Scholar 

  28. C. Radhakrishnan, M. K. F. Lo, M.V. Warrier, M. A. Garcia-Garibay and H. G. Monbouquette, Langmuir, 22, 5018 (2006).

    Article  CAS  Google Scholar 

  29. Y. Sun and S. Li, J. Hazard. Mater., 154, 112 (2008).

    Article  CAS  Google Scholar 

  30. W.G. Shin, H. J. Jung, H. G. Sung, H. S. Hyun and Y. Sohn, Ceram. Inter., 40, 11511 (2014).

    Article  CAS  Google Scholar 

  31. S. Wan, Y. Yu, J. Pu and Z. Lu, RSC Adv., 5, 19236 (2015).

    Article  CAS  Google Scholar 

  32. Y. Sohn, J. Mol. Catal. A, 379, 59 (2013).

    Article  CAS  Google Scholar 

  33. J.G. Kang and Y. Sohn, J. Mater. Sci., 47, 824 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Gye Sung or Youngku Sohn.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, W.G., Han, D., Park, Y. et al. Combustion of boron particles coated with an energetic polymer material. Korean J. Chem. Eng. 33, 3016–3020 (2016). https://doi.org/10.1007/s11814-016-0173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0173-8

Keywords

Navigation