Skip to main content
Log in

Iron oxide grown by low-temperature atomic layer deposition

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Atomic layer deposition (ALD) is a promising technology for fabricating conformal thin films of atomlevel thickness with chemical composition control over a variety of structures. This paper demonstrates the ALD of iron oxide thin films using a novel iron precursor, namely, bis[bis(trimethylsilyl)amide]iron [Fe(btmsa)2] and hydrogen peroxide as an oxygen source. The growth characteristics of iron oxide were investigated by varying the deposition temperatures from 100 to 225 °C, such that the ALD growth mode was observed at 150 to 175 °C with an average growth rate of 0.035±0.005 nm/cycle. The films deposited in ALD mode exhibited highly linear film thicknesses with the number of cycles and excellent conformality over high-aspect-ratio trenches. In addition, the deposited films were extremely pure and revealed a hematite phase without any subsequent heat treatment, even if the films were deposited at low temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Tamirat, J. Rick, A. A. Dubale, W. N. Su and B. J. Hwang, Nanoscale Horiz., 1(4), 243 (2016).

    Article  Google Scholar 

  2. P. Tartaj, M. P. Morales, T. G. Carreno, S.V. Verdaguer and C. J. Serna, Adv. Mater., 23(44), 5243 (2011).

    Article  CAS  Google Scholar 

  3. T. Hisatomi, H. Dotan, M. Stefik, K. Sivula, A. Rothschild, M. Gratzel and N. Mathews, Adv. Mater., 24(20), 2699 (2012).

    Article  CAS  Google Scholar 

  4. H. I. Adegoke, F. AmooAdekola, O.S. Fatoki and B.J. Ximba, Korean J. Chem. Eng., 31(1), 142 (2014).

    Article  CAS  Google Scholar 

  5. X. Lu, Y. Zeng, M. Yu, T. Zhai, C. Liang, S. Xie, M. S. Balogun and Y. Tong, Adv. Mater., 26(19), 3148 (2014).

    Article  CAS  Google Scholar 

  6. K. Siroky, J. Jireova and L. Hudec, Thin Solid Films, 245, 211 (1994).

    Article  CAS  Google Scholar 

  7. L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao and J. Zhao, Sens. Actuators B, 107(2), 915 (2005).

    Article  CAS  Google Scholar 

  8. G. Neri, A. Bonavita, S. Galvagno, Y. X. Li, K. Galatsis and W. Wlodarski, IEEE Sens. J., 3, 195 (2003).

    Article  CAS  Google Scholar 

  9. A. Duret and M. Graltzel, J. Phys. Chem. B., 109(36), 17184 (2005).

    Article  CAS  Google Scholar 

  10. M. Cornuz, M. Gratzel and K. Sivula, Chem. Vap. Deposition, 16(10-12), 291 (2010).

    Article  CAS  Google Scholar 

  11. G. Carraro, A. Gasparotto, C. Maccato, E. Bontempi and D. Barreca, Chem. Vap. Deposition, 21(10-12), 291 (2005).

    Google Scholar 

  12. Y. Lin, Y. Xu, M.T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou and D. Wang, J. Am. Chem. Soc., 134(12), 5508 (2012).

    Article  CAS  Google Scholar 

  13. S.C. Riha, B.M. Klahr, E.C. Tyo, S. Seifert, S. Vajda, M. J. Pellin, T.W. Hamann and A. B. F. Martinson, ACS Nano., 7(3), 2396 (2013).

    Article  CAS  Google Scholar 

  14. O. Zandi, B. M. Klahr and T.W. Hamann, Energy Environ. Sci., 6(2), 634 (2013).

    Article  CAS  Google Scholar 

  15. S.M. George, Chem. Rev., 110(1), 111 (2010).

    Article  CAS  Google Scholar 

  16. S. H. Lim, S.W. Seo, H. Lee, H. Chae and S. M. Cho, Korean J. Chem. Eng., 33(6), 1971 (2016).

    Article  CAS  Google Scholar 

  17. M. Knez, K. Nielsch and L. Niinisto, Adv. Mater., 19(21), 3425 (2007).

    Article  CAS  Google Scholar 

  18. V. Miikkulainen, M. Leskela, M. Ritala and R. L. Puurunen, J. Appl. Phys., 113, 021301 (2013).

    Article  Google Scholar 

  19. J.R. Scheffe, A. Frances, D.M. King and X. Liang, Thin Solid Films, 517(6), 1874 (2009).

    Article  CAS  Google Scholar 

  20. A. B. F. Martinson, M. J. Devries, J.A. Libera, S.T. Christensen, J.T. Hupp, M. J. Pellin and J.W. Elam, J. Phys. Chem. C., 115(10), 4333 (2011).

    Article  CAS  Google Scholar 

  21. M. Rooth, A. Johansson, K. Kukli, J. Aarik, M. Boman and A. Harsta, Chem. Vap. Deposition, 14(3-4), 67 (2008).

    Article  CAS  Google Scholar 

  22. S. C. Riha, J. M. Racowski, M. P. Lanci, J. A. Klug, A. S. Hock and A. B. F. Martinson, Langmuir, 29(10), 3439 (2013).

    Article  CAS  Google Scholar 

  23. J. A. Klug, N. G. Becker, S. C. Riha and A. B. F. Martinson, J. Mater. Chem. A., 1, 11607 (2013).

    Article  CAS  Google Scholar 

  24. B. S. Lim, A. Rahtu and R.G. Gordon, Nature Mater., 2, 749 (2003).

    Article  CAS  Google Scholar 

  25. J. R. Avila, D.W. Kim, M. Rimoldi and O.K. Farha, ACS Appl. Mater. Interfaces, 7(30), 16138 (2015).

    Article  CAS  Google Scholar 

  26. M. Lie, H. Fjellvag and A. Kjekshus, Thin Solid Films, 488(1-2), 74 (2005).

    Article  CAS  Google Scholar 

  27. J. Bachmann, J. Jing, M. Knez, S. Barth, H. Shen, S. Mathur, U. Gosele and K. Nielsch, J. Am. Chem. Soc., 129(31), 9554 (2007).

    Article  CAS  Google Scholar 

  28. M. de Ridder, P. C. van de Ven, R. G. van Welzenis, H.H. Brongersma, S. Helfensteyn, C. Creemers, P.V.D. Voort, M. Baltes, M. Mathieu and E. F. Vansant, J. Phys. Chem. B, 106(51), 13146 (2002).

    Article  Google Scholar 

  29. R. A. Andersen, K. Faegri Jr., J. C. Green, A. Haaland, M. F. Lappert, W.P. Leung and K. Rypdal, Inorg. Chem., 27(10), 1782 (1988).

    Article  CAS  Google Scholar 

  30. J. A. Libera, J. N. Hryn and J.W. Elam, Chem. Mater., 23(8), 2150 (2011).

    Article  CAS  Google Scholar 

  31. D. M. Hausmann and R. G. Gordon, J. Crystal Growth, 249, 251 (2003).

    Article  CAS  Google Scholar 

  32. B. Sambandam, A. Surenjan, L. Philip and T. Pradeep, ACS Sustainable Chem. Eng., 3(7), 1321 (2015).

    Article  CAS  Google Scholar 

  33. S. Karakalos, A. Siokou and S. Ladas, Appl. Surf. Sci., 255(21), 8941 (2009).

    Article  CAS  Google Scholar 

  34. D.-H. Kim, J. J. Kim, J.W. Park and J. J. Kim, J. Electrochem. Soc., 143(9), L188 (1999).

    Article  Google Scholar 

  35. N. S. McIntyre and D. G. Zetaruk, Anal. Chem., 49(11), 1521 (1977).

    Article  CAS  Google Scholar 

  36. A. P. Grosvenor, B. A. Kobe, M. C. Biesinger and N. S. McIntyre, Surf. Interface Anal., 36(12), 1564 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Heyoung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraj, S., Moon, H., Yun, JY. et al. Iron oxide grown by low-temperature atomic layer deposition. Korean J. Chem. Eng. 33, 3516–3522 (2016). https://doi.org/10.1007/s11814-016-0319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0319-8

Keywords

Navigation