Skip to main content

Advertisement

Log in

Formation and stability study of silver nano-particles in aqueous and organic medium

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Colloidal silver nanoparticles were obtained by chemical reduction of silver nitrate in water and organic solvent with sodium borohydride. The effects of oxidant, reducing agent, stabilizer, and temperature, during the growth of silver nanoparticles were discussed. As the reaction proceeded in aqueous medium a characteristic plasmon absorption peak between 390-420 nm appeared as presence of silver nanoparticles. The peak intensities and shifting (blue or red) were altered in accordance with some applied factors. The formed silver nanoparticles were found to be with particles size range from 3 to 20 nm. The change rates of Ag+ ions to Ag0 in aqueous and organic solvent are strongly temperature dependent, although reduction can take place at room temperature. The silver nano-colloid with negative zeta potential also has been confirmed to be more stable. Obtained nanoparticles were characterized by UV-vis spectrophotometer, particle analyzer for zeta (ζ) potential, polydispersity index (PDI), and transmission electron microscope (TEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Shing, V. Sharma, P. Naik, V. Khandelwal and H. Singh, Digest J. Nanomat Biostruct, 6(2), 535 (2011).

    Google Scholar 

  2. Y. Sun and Y. Xia, Science, 298, 2176 (2002).

    Article  CAS  Google Scholar 

  3. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, E. Ge, F. Peale and M. P. Bruchez, National Biotechnol., 21, 41 (2003).

    Article  CAS  Google Scholar 

  4. A. Ruivo, C. Gomes, A. Lima, M. L. Botelho, R. Melo, A. Belchior and A. P. Matos, J. Cult. Herit, 9(Suppl. ), e134 (2008).

    Article  Google Scholar 

  5. O. Bobin, M. Schvoerer, C. Ney, M. Rammah, B. Pannequin, E. C. Platamone, A. Daoulatli and R. P. Gayraud, Color Res. Appl., 28, 352 (2003).

    Article  Google Scholar 

  6. N. Asare, C. Instanes, W. J. Sandberg, M. Refsnes, P. Schwarze, M. Kruszewski and G. Brunborg, Toxicology, 291(1-3), 65 (2011).

    Article  Google Scholar 

  7. M. Ramos, D. A. Ferrer, R. R. Chianelli, V. Correa, J. M. Serrano and S. Flores, J. Nanomaterials, 1 (2011).

  8. Y. Zheng, M. Xiao, S. Jiang, F. Ding and J. Wang, Nanoscale, 5, 788 (2013).

    Article  CAS  Google Scholar 

  9. B. Tang, J. F. Wang, S. P. Xu, T. Afrin, J. L. Tao, W. Q. Xu, L. Sun and X. Wang, Chem. Eng. J., 185, 366 (2012).

    Article  Google Scholar 

  10. B. Tang, J. Li, X. Hou, T. Afrin, L. Sun and X. Wang, Ind. Eng. Chem. Res., 52, 4556 (2013).

    Article  CAS  Google Scholar 

  11. P. Li, J. Li, C. Wu, Q. Wu and J. Li, Nanotechnology, 16, 1912 (2005).

    Article  CAS  Google Scholar 

  12. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara and M. J. Yacaman, J. Nanobiotechnol., 3, 6 (2005), http://www.jnanobiotechnology. com/content/3/1/6.

    Article  Google Scholar 

  13. R. Jin, Y. Cao, A. Mirkin, K. L. Kelly, G. C. Schatz and J. G. Zhang, Science, 294, 1901 (2001).

    Article  CAS  Google Scholar 

  14. R. A. de Barros, C. R. Martins and W. M. de Azevedo, Synth. Met., 155, 35 (2005), DOI:10.1016/j.synthmet.2005.05.014.

    Article  Google Scholar 

  15. K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B, 107, 668 (2002).

    Article  Google Scholar 

  16. S. L. Kleinman, B. Sharma, M. G. Blaber, A.-I. Henry, N. Valley, R. G. Freeman, M. J. Natan, G. C. Schatz and R. P. V. Duyne, J. Am. Chem. Soc., 135, 301 (2013).

    Article  CAS  Google Scholar 

  17. S. Szunerits and R. Boukherroub, Chem. Commun., 48, 8999 (2012).

    Article  CAS  Google Scholar 

  18. A. I. Henry, J. M. Bingham, E. Ringe, L. D. Marks, G. C. Schatz and R. P. van Duyne, J. Phys. Chem. C, 115, 9291 (2011).

    Article  CAS  Google Scholar 

  19. L. M. L. Marzan and I. Lado-Tourino, Langmuir, 12(15), 3585 (1996).

  20. A. K. Rashid, R. K. Renat, G. Olga, E. Yuri and S. Thomas, Nanopart. Res., 11, 1193 (2009).

    Article  Google Scholar 

  21. A. B. Smetana, K. J. Klabunde and C. M. Sorensen, J. Colloid Interface Sci., 284(2), 521 (2005).

    Article  CAS  Google Scholar 

  22. K. J. Lee, B. H. Jun, J. Choi, Y. I. Lee, J. Joung and Y. S. Oh, Nanotechnology, 18, 335601 (5pp) (2007).

    Article  Google Scholar 

  23. P. Y. Silvert, R. Herrera-Urbina, N. Duvauchelle and V. Vijayakrishnan, J. Mater. Chem., 6(4), 573 (1996).

    Article  CAS  Google Scholar 

  24. Y. P. Sun, P. Atorngitjawat and M. J. Meziani, Langmuir, 17(19), 5707 (2001).

    Article  CAS  Google Scholar 

  25. A. Henglein, Chem. Mater., 10(1), 444 (1998).

    Article  CAS  Google Scholar 

  26. T. Kaushik, S. Mhatre and R. Parikh, Nanomed Nanotechnol. Bio. Med., 6(2), 257 (2010).

    Article  Google Scholar 

  27. K. D. Kim, D. N. Han and H. T. Kim, Chem. Eng. J., 104, 55 (2004).

    Article  CAS  Google Scholar 

  28. H. D. L. Van and C. F. Zukoski, Langmuir, 14, 7034 (1998).

    Article  Google Scholar 

  29. J. P. Chen and L. L. Lim, Chemosphere, 49(4), 363 (2002).

    Article  CAS  Google Scholar 

  30. A. Tao, P. Sinsermsuksaku and P. Yang, Angew. Chem. Int., 45, 4597 (2006).

    Article  CAS  Google Scholar 

  31. H. D. L. Van and C. F. Zukoski, Langmuir, 17, 3128 (2001).

    Article  Google Scholar 

  32. G. Wang, C. Shi, N. Zhao and X. Du, Mater. Lett., 61, 3795 (2007).

    Article  CAS  Google Scholar 

  33. K. C. Song, S. M. Lee, T. S. Park and B. S. Lee, Korean J. Chem. Eng., 26(1), 153 (2009).

    Article  CAS  Google Scholar 

  34. J. Liu, J. B. Lee, D. H. Kim and Y. Kim, Colloids Surf., A, 302, 276 (2007).

    CAS  Google Scholar 

  35. S. D. Solomon, M. Bahadory, A. V. Jeyarajasingam, S. A. Rutkowsky and C. Boritz, J. Chem. Ed., 84, 322 (2007).

    Article  CAS  Google Scholar 

  36. J. Eastman and T. Cosgrove, Ed., p. 54, Blackwell UK (2005).

  37. T. L. Farias., U. O. Koylu and M. G. J. Quant. Spectrosc. Radiar. Transfer., 55(3), 357 (1996).

  38. W. R. Glomm, J. Dispersion Sci. Technol., 26, 389 (2005).

    Article  CAS  Google Scholar 

  39. Victor Elias Torres Heredia, doctoral thesis (2011).

  40. K. B. Mogensen and K. Kneipp, J. Phys. Chem. C, 118, 28075 (2014).

    Article  CAS  Google Scholar 

  41. S. S. Khan, A. Mukherjee and N. Chandrasekaran, Water Res., 45, 5184 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghyun Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, M.N., Kwon, S. & Cho, D. Formation and stability study of silver nano-particles in aqueous and organic medium. Korean J. Chem. Eng. 34, 2072–2078 (2017). https://doi.org/10.1007/s11814-017-0096-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0096-z

Keywords

Navigation