Skip to main content
Log in

Review in Sound Absorbing Materials

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This article is a bibliographical revision concerning acoustic absorbing materials, also known as poroelastics. These absorbing materials are a passive medium use extensively in the industry to reduce noise. This review presents the fundamental parameters that define each of the parts comprising these materials, as well as current experimental methods used to measure said parameters. Further along, we will analyze the principle models of characterization in order to study the behaviour of poroelastic materials. Given the lack of accuracy of the standing wave method three absorbing materials are characterized using said principle models. A comparison between measurements with the standing wave method and the predicted surface impedance with the models is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allard JF (1993) Propagation of sound in porous media: modelling sound absorbing materials. Elsevier, Ireland

    Google Scholar 

  2. Allard JF, Champoux Y (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J Acoust Soc Am 91:3346–3353

    Article  Google Scholar 

  3. Allard JF, Depollier C, Aknine A (1986) Acoustical properties of partially reticulated foams with high and medium flow resistance. J Acoust Soc Am 79:1734–1740

    Article  Google Scholar 

  4. Allard JF, Depollier C, Rebillard P, Lauriks W, Cops A (1989) Inhomogeneous Biot waves in layered media. J Appl Phys 66:2278–2284

    Article  Google Scholar 

  5. Allard JF, Depollier C, Guignouard P, Rebillard P (1991) Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness. J Acoust Soc Am 89(3):999–1001

    Article  Google Scholar 

  6. Attenborough K (1987) On the acoustic slow wave in air-filled granular media. J Acoust Soc Am 81:93–102

    Article  Google Scholar 

  7. Ayrault C (1999) Influence de la presión statique sur la caracterisation ultasonore de materiaux poreux: etude du regime de faible diffusion. Thesis of the University of Maine, France

  8. Beranek LL, Vér IL (eds) (1992) Noise and vibration control engineering: principles and applications. Wiley, New York

    Google Scholar 

  9. Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Article  Google Scholar 

  10. Biot M (1956) Theory of deformation of a porous viscoelastic anisotropic solid. J Appl Phys 27(5):459–467

    Article  MathSciNet  Google Scholar 

  11. Biot M (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178

    Article  MathSciNet  Google Scholar 

  12. Biot M (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am 28(2):179–191

    Article  MathSciNet  Google Scholar 

  13. Brouard B, Castagnède B, Henry M, Lafarge D, Sahraoui S (2004) Mesure des propriétés acoustiques des matériaux poreux. Techniques d l’Ingénieur, traité Mesures et contrôle. Obtained in July, 28, 2004 from http://www.techniques-ingenieur.fr/affichage/DispIntro.asp?nGcmId=R6120

  14. Brown RJS (1980) Connection between formation factor for electrical resistivity and fluid-solid coupling factor in Biot’s equations for acoustic waves in fluid-filled media. Geophysics 45:1269–1275

    Article  Google Scholar 

  15. Burridge R, Keller JB (1985) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146

    Article  Google Scholar 

  16. Champoux Y, Stinson MR, Daigle GA (1990) Air-based system for the measurement of porosity. J Acoust Soc Am 89:910–916

    Article  Google Scholar 

  17. Dauchez N (1999) Étude vibroacoustique des materiaux poreaux par éléments finis. Thesis of the University of Maine, France and the University of Sherbrooke, Canada

  18. Dauchez N, Sahraoui S, Atalla N (2000) Validation of 3-D poroelastic finite element from the impedance measurement of a vibrating foam sample. Can Acoust 4:94–95

    Google Scholar 

  19. Delany M-E, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust (3), 105–116

  20. Fahy F (2001) Foundations of engineering acoustics. Academic, London

    Google Scholar 

  21. Fellah ZEA, Berger S, Lauriks W, Depollier C, Aristegui C, Chapelon J-Y (2003) Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence. J Acoust Soc Am 113(5):2424–2433

    Article  Google Scholar 

  22. Franco García A (2004) Física con ordenador. Curso interactivo de física en internet. Obtained from http://www.sc.ehu.es/sbweb/fisica/estadistica/termo/Termo.html

  23. Hilyard NC, Cunningham A (1994) Low density cellular plastics–physical basis of behaviour. Chapman & Hall, London

    Google Scholar 

  24. Horoshenkov KV, Khan A, Bécot F-X, Jaouen L, Sgard F, Pompoli F, Prodi N, Bonfiglio P, Pispola G, Asdrubali F, Hübelt J, Atalla N, Amédin CK, Lauriks W, Boeckx L (2007) Reproducibility experiments on measuring acoustical properties of rigid-frame porous media (round-robin tests). J Acoust Soc Am 122(1):345–353

    Article  Google Scholar 

  25. Ingard U (1994) Notes on sound absorption technology. Noise Control Foundation, Poughkeepsie

    Google Scholar 

  26. Johnson DL, Koplik J, Dashen R (1987) Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J Fluid Mech 176:379–402

    Article  MATH  Google Scholar 

  27. Kim YK, Kingsbury HB (1979) Dynamic characterization of poroelastic materials. Exp Mech 19:252–258

    Article  Google Scholar 

  28. Kinsler LE, Frey AR, Coppens AB, Sanders JV (2000) Fundamentals of acoustics, 4th edn. Wiley, New York

    Google Scholar 

  29. Kirchhoff G (1868) Ubre der Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung. Ann Phys CEIME 134:177–193

    Article  Google Scholar 

  30. Lafarge D, Lamarinier P, Allard JF (1997) Dynamic compressibility of air in porous structures at audible frequencies. J Acoust Soc Am 102(4):1995–2006

    Article  Google Scholar 

  31. Landaluze J, Portilla I, Pagalday JM, Martínez A, Reyero R (2003) Application of active noise control to an elevator cabin. Control Eng Pract 11:1423–1431

    Article  Google Scholar 

  32. Langlois C, Panneton R, Atalla N (2001) Polynomial relations for quasi-static mechanical characterization of isotropic poroelastic materials. J Acoust Soc Am 110(6):3032–3040

    Article  Google Scholar 

  33. Lauriks W, Cops A, Allard JF, Depollier C, Rebillard P (1990) Modelization at oblique incidence of layered porous materials with impervious screens. J Acoust Soc Am 87(3):1200–1206

    Article  Google Scholar 

  34. Lemarinier P, Henry M, Allard J-F (1995) Connection between the dynamic bulk modulus of air in a porous medium and the specific surface. J Acoust Soc Am 97:3478–3482

    Article  Google Scholar 

  35. Mariez E, Sahraoui S, Allard JF (1996) Elastic constants of polyurethane foam’s skeleton for Biot model. Proc Internoise 96:951–954

    Google Scholar 

  36. Mariez E, Sahraoui S (1997) Measurement of mechanical anisotropic properties of acoustic foams for the Biot model. In: Internoise 97, Budapest, Hungary, August 25–27, pp 1683–1686

  37. Melon M, Castagnède B (1995) Correlation between tortuosity and transmission coefficient of porous media at high frequency. J Acoust Soc Am 98:1228–1230

    Article  Google Scholar 

  38. Melon M, Mariez E, Ayrault C, Sahraoui S (1998) Acoustical and mechanical characterization of anisotropic open-cell foams. J Acoust Soc Am 9104:2622–2627

    Article  Google Scholar 

  39. Mendibil X (2004) Medida de la absorción acústica de los materiales poroelásticos. Thesis presented in the University of Mondragón, Spain

  40. Nykänen H, Antila M, Ollikainen V, Lekkala J, Paajanen M, Vosukainen S, Kirjavainen K (2001) Active noise control in cars and trains using EMFi panel actuators as anti-noise sources. In: Primer forum Européen, matériaux et dispositifs insonorisants dans la conception vibroacoustique des machines et véhicules 1, pp 419–441

  41. Okuno A (1986) Dynamic response of structures containing poroelastic materials. PhD dissertation, School of Mechanical Engineering, University of Delaware

  42. Panneton R (1996) Modélisation numérique tridimensionnelle par éléments finis des milieux poroélastiques. Thesis of the University of Sherbrooke, Canada

  43. Pilon D, Panneton R, Sgard F (2003) Behavioral criterion quantifying the edge-constrained effects on foams in the standing wave tube. J Acoust Soc Am 114(4):1980–1987

    Article  Google Scholar 

  44. Prieto A, Bermúdez A (2003) Propagación acústica en medios multicapa. University of Santiago de Compostela, Department of Applied Mathematics, Santiago de Compostela, Spain

  45. Pritz T (1982) Transfer function method for investigating the complex modulus of acoustic materials: Rodlike specimen. J Sound Vib 81:359–376

    Article  MATH  Google Scholar 

  46. Sánchez San Román FJ Flujo en medios porosos : Ley de Darcy. Obtained from http://web.usal.es/~javisan/hidro/temas/T080.pdf

  47. Schanz M (2003). On the equivalence of the linear Biot’s theory and the linear theory of porous media. In: 16th ASCE engineering mechanics conference. July 16–18, 2003. Technical University Braunschwieg, Institute of Applied Mechanics

  48. Sim S, Kim K-J (1990) A method to determinate the complex modulus and Poisson’s ratio of viscoelastic materials from FEM applications. J Sound Vib 141:71–82

    Article  Google Scholar 

  49. Stinson MR (1991) The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J Acoust Soc Am 89:550–558

    Article  Google Scholar 

  50. Tikander M (2002) Model-based curvefitting for in-situ impedance measurements. Master Degree Thesis of the Technological University of Helsinki, Laboratory of Acoustic and Audio Signal Processing, Finland

  51. Vardoulakis I, Beskos D (1986) Dynamic behavior of nearly saturated porous media. Mech Compos Mater 5:87–108

    Google Scholar 

  52. Vigran TE, Kelders L, Lauriks W, Leclaire P, Johansen TF (1997) Prediction and measurements of the influence of boundary conditions in a standing wave tube. Acust Acta Acust 83:419–423

    Google Scholar 

  53. Von Terzaghi K (1923) Die Berechnung der durchlässigkeit des tones aus dem verlauf der hydromechanischen spannungserscheinungen. Sitz Akad Wiss (Wien): Math-Naturwiss Kl 132:125–138

    Google Scholar 

  54. Wijesinghe A, Kingsbury HB (1979) Complex modulus of a poroelastic column. J Acoust Soc Am 65:91–95

    Article  Google Scholar 

  55. Zwikker C, Kosten CW (1949) Sound absorbing materials. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sagartzazu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagartzazu, X., Hervella-Nieto, L. & Pagalday, J.M. Review in Sound Absorbing Materials. Arch Computat Methods Eng 15, 311–342 (2008). https://doi.org/10.1007/s11831-008-9022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-008-9022-1

Keywords

Navigation