Skip to main content
Log in

Aerodynamic Shape Optimization Using First and Second Order Adjoint and Direct Approaches

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper focuses on discrete and continuous adjoint approaches and direct differentiation methods that can efficiently be used in aerodynamic shape optimization problems. The advantage of the adjoint approach is the computation of the gradient of the objective function at cost which does not depend upon the number of design variables. An extra advantage of the formulation presented below, for the computation of either first or second order sensitivities, is that the resulting sensitivity expressions are free of field integrals even if the objective function is a field integral. This is demonstrated using three possible objective functions for use in internal aerodynamic problems; the first objective is for inverse design problems where a target pressure distribution along the solid walls must be reproduced; the other two quantify viscous losses in duct or cascade flows, cast as either the reduction in total pressure between the inlet and outlet or the field integral of entropy generation. From the mathematical point of view, the three functions are defined over different parts of the domain or its boundaries, and this strongly affects the adjoint formulation. In the second part of this paper, the same discrete and continuous adjoint formulations are combined with direct differentiation methods to compute the Hessian matrix of the objective function. Although the direct differentiation for the computation of the gradient is time consuming, it may support the adjoint method to calculate the exact Hessian matrix components with the minimum CPU cost. Since, however, the CPU cost is proportional to the number of design variables, a well performing optimization scheme, based on the exactly computed Hessian during the starting cycle and a quasi Newton (BFGS) scheme during the next cycles, is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lighthill MJ (1945) A new method of two-dimensional aerodynamic design. Aeronautical Research Council

  2. McFadden GB (1979) An artificial viscosity method for the design of supercritical airfoils. New York University Report C00-3077-158

  3. Davis L (1991) Handbook of genetic algorithms. Van Nostrand Reinhold, New York

    Google Scholar 

  4. Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  5. Bäck T (1996) Evolutionary algorithms in theory and practice. Evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, Oxford

    MATH  Google Scholar 

  6. Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, Oxford

    MATH  Google Scholar 

  7. Bertsekas DP (1996) Constrained optimization and Lagrange multiplier methods, 1st edn. Athena Scientific, Nashua

    Google Scholar 

  8. Bertsekas DP (1999) Nonlinear programming, 2nd edn. Athena Scientific, Nashua

    MATH  Google Scholar 

  9. Gill PE, Murray W, Wright MH (1981) Practical optimization. Academic, New York

    MATH  Google Scholar 

  10. Luenberger DG (2003) Linear and nonlinear programming, 2nd edn. Kluwer Academic, Dordrecht

    MATH  Google Scholar 

  11. Fletcher R (1988) Practical methods of optimization, 2nd edn. Wiley, New York

    Google Scholar 

  12. Jin Y (2003) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9:3–12

    Article  Google Scholar 

  13. Wang GG, Shan S (2006) Review of metamodelling techniques in support of engineering design optimization. Trans ASME, J Mech Des 129(4):370–380

    Article  Google Scholar 

  14. El-Beltagy MA, Nair PB, Keane AJ (1999) Metamodeling techniques for evolutionary optimization of computationally expensive problems: Promises and limitations. In: GECCO99, genetic and evolutionary computation conference, Orlando, July 1999

  15. Giannakoglou K (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Int Rev J Prog Aerosp Sci 38:43–76

    Article  Google Scholar 

  16. Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, New York

    MATH  Google Scholar 

  17. Pironneau O (1974) On optimum design in fluid mechanics. J Fluid Mech 64:97–110

    Article  MATH  MathSciNet  Google Scholar 

  18. Pironneau O (1984) Optimal shape design for elliptic systems. Springer, New York

    MATH  Google Scholar 

  19. Jameson A (1988) Aerodynamic design via control theory. J Sci Comput 3:233–260

    Article  MATH  Google Scholar 

  20. Jameson A, Reuther J (1994) Control theory based airfoil design using the Euler equations. AIAA Paper 94-4272

  21. Jameson A (1995) Optimum aerodynamic design using CFD and control theory. AIAA Paper 95-1729

  22. Jameson A, Pierce N, Martinelli L (1998) Optimum aerodynamic design using the Navier-Stokes equations. Theor Comput Fluid Dyn 10:213–237

    Article  MATH  Google Scholar 

  23. Anderson WK, Nielsen E (2001) Sensitivity analysis for Navier-Stokes equations on unstructured grids using complex variables. AIAA J 39(31):56–63

    Article  Google Scholar 

  24. Lyness JN, Moler CB (1967) Numerical differentiation of analytic functions. In: ACM 22nd national conference

  25. Martins R, Kroo IM, Alonso J (2000) An automated method for sensitivity analysis using complex variables. AIAA Paper 2000-0689

  26. Squire W, Trapp G (1998) Using complex variables to estimate derivatives of real functions. SIAM Rev 10(1):110–112

    Article  MathSciNet  Google Scholar 

  27. Newman JC, Anderson WK, Whitfield DL (1998) Multidisciplinary sensitivity derivatives using complex variables. Tech Rep MSSU-COE-ERC-98-08

  28. Nielsen EJ, Kleb WL (2005) Efficient construction of discrete adjoint operators on unstructured grids by using complex variables. AIAA Paper 2005-0324

  29. Courty F, Dervieux A, Koobus B, Hascoët L (2003) Reverse automatic differentiation for optimum design: from adjoint state assembly to gradient computation. Optim Methods Softw 18(5):615–627

    Article  MATH  MathSciNet  Google Scholar 

  30. Griewank A (1989) On automatic differentiation. In: Mathematical programming: recent developments and applications. Kluwer Academic, Dordrecht

    Google Scholar 

  31. Hovland P, Mohammadi B, Bischof C (1997) Automatic differentiation of Navier–Stokes computations. Technical Report MCS-P687-0997, Argonne National Laboratory

  32. Juedes D (1991) A taxonomy of automatic differentiation tools. In: Automatic differentiation of algorithms: theory, implementation, and application. SIAM, Philadelphia, pp 315–329

    Google Scholar 

  33. Bischof C, Carle A, Corliss G, Griewank A, Hovland P (1991) ADIFOR Generating derivative codes from Fortran programs. Report CRPC-TR91185-S, Center for Research and Parallel Computation, Rice University

  34. Giering R, Kaminski T (1998) Recipes for adjoint code construction. ACM Trans Math Softw 24:437–474

    Article  MATH  Google Scholar 

  35. Berz M (1990) The DA precompiler DAFOR. Technical Report, Lawrence Berkeley National Laboratory, Berkeley, CA

  36. Horwedel J (1991) GRESS a preprocessor for sensitivity studies of Fortran programs. AIAA Paper 91-005

  37. Faure C (2005) An automatic differentiation platform: Odyssée. Future Gener Comput Syst 21(8):1391–1400

    Article  MathSciNet  Google Scholar 

  38. Stephens B (1991) Automatic differentiation as a general-purpose numerical tool. PhD thesis, School of Mathematics, University of Bristol, UK

  39. Shiriaev D, Griewank A, Utke J (1996) A user guide to ADOL–F: automatic differentiation of Fortran codes. IOKOMO-04-1995

  40. Rhodin A (1997) IMAS–integrated modeling and analysis system for the solution of optimal control problems. Comput Phys Commun 107:21–38

    Article  MATH  Google Scholar 

  41. Christianson B (1992) Automatic Hessians by reverse accumulation. J Numer Anal 12:135–150

    Article  MATH  MathSciNet  Google Scholar 

  42. Bischof C, Roh L, Mauer-Oats A (1997) ADIC An extensible automatic differentiation tool for ANSI-C. Preprint ANL/MCS-P626-1196, Argonne National Laboratory

  43. Griewank A, Juedes D, Mitev H, Utke J, Vogel O, Walther A (1996) ADOL-C: a package for the automatic differentiation of algorithms written in C/C++. ACM Trans Math Softw 22(2):131–167

    Article  MATH  Google Scholar 

  44. Pierce NA, Giles MB (2000) An introduction to the adjoint approach to design. Flow Turbul Combust 65(3–4):393–415

    MATH  Google Scholar 

  45. Nadarajah S, Jameson A (2000) A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization. AIAA Paper 2000-0667

  46. Nadarajah S, Jameson A (2001) Studies of the continuous and discrete adjoint approaches to viscous automatic aerodynamic shape optimization. AIAA Paper 2001-2530

  47. Spalart PR, Allmaras SR (1994) A one-equation turbulence model for aerodynamic flows. Rech Aerosp (1):5–21

  48. Roe P (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43:357–371

    Article  MATH  MathSciNet  Google Scholar 

  49. Papadimitriou DI, Giannakoglou KC (2007) A continuous adjoint method with objective function derivatives based on boundary integrals for inviscid and viscous flows. J Comput Fluids 36:325–341

    Article  Google Scholar 

  50. Anderson WK, Venkatakrishnan V (1997) Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. AIAA Paper 97-0643

  51. Anderson WK, Venkatakrishnan V (1997) Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Comput Fluids 28:443–480

    Article  Google Scholar 

  52. Asouti VG, Zymaris AS, Papadimitriou DI, Giannakoglou KC (2008) Continuous and discrete adjoint approaches for aerodynamic shape optimization with low Mach number preconditioning. Int J Numer Methods Fluids 57:1485–1504

    Article  MATH  MathSciNet  Google Scholar 

  53. Arian E, Salas MD (1997) Admitting the inadmissible: adjoint formulation for incomplete cost functionals in aerodynamic optimization. NASA/CR-97-206269, ICASE Report No 97-69

  54. Baysal O, Ghayour K (2001) Continuous adjoint sensitivities for optimization with general cost functionals on unstructured meshes. AIAA J 39(1)

  55. Jameson A, Kim S (2003) Reduction of the adjoint gradient formula in the continous limit. AIAA Paper 2003-0040

  56. Denton JD (1993) Loss mechanisms in turbomachines. ASME Paper 93-GT-435

  57. Davies MRD, O’Donnell FK, Niven AJ (2000) Turbine blade entropy generation rate, part I: the boundary layer defined. ASME Paper 2000-GT-265

  58. O’Donnell FK, Davies MRD (2000) Turbine blade entropy generation rate, part II: the measured loss. ASME Paper 2000-GT-266

  59. Papadimitriou DI, Giannakoglou KC (2006) Compressor blade optimization using a continuous adjoint formulation. ASME TURBO EXPO, GT2006/90466, Barcelona

  60. Papadimitriou DI, Giannakoglou KC (2007) Total pressure losses minimization in turbomachinery cascades, using a new continuous adjoint formulation. Proc Inst Mech Eng, Part A: J Power Energy 222(6):865–872

    Article  Google Scholar 

  61. Papadimitriou DI, Zymaris AS, Giannakoglou KC (2005) Discrete and continuous adjoint formulations for turbomachinery applications. In: UROGEN 2005, international conference proceedings, Munich, September 2005

  62. Papadimitriou DI, Giannakoglou KC (2006) A continuous adjoint method for the minimization of losses in cascade viscous flows. AIAA Paper 2006-0049

  63. Kim SK, Alonso JJ, Jameson A (2000) Two-dimensional high-lift aerodynamic optimization using the continuous adjoint method. AIAA Paper 2000-4741

  64. Kim SK, Alonso JJ, Jameson A (2002) Design optimization of high-lift configurations using a viscous continuous adjoint method. AIAA Paper 2002-0844

  65. Leoviriyakit K, Jameson A (2003) Aerodynamic shape optimization of wings including planform variations. AIAA Paper 2003-0210

  66. Leoviriyakit K, Kim S, Jameson A (2003) Viscous aerodynamic shape optimization of wings including planform variations. AIAA Paper 2003-3498

  67. Leoviriyakit K, Kim S, Jameson A (2004) Aero-structural wing planform optimization using the Navier-Stokes equations. AIAA Paper 2004-4479

  68. Leoviriyakit K, Jameson A (2005) Multi-point wing planform optimization via control theory. AIAA Paper 2005-0450

  69. Giles MB, Pierce NA (1997) Adjoint equations in CFD: duality, boundary conditions and solution behaviour. AIAA Paper 97-1850

  70. Giles MB, Pierce NA (1998) On the properties of solutions of the adjoint Euler equations. In: 6th ICFD conference on numerical methods for fluid dynamics, Oxford, UK, 1998

  71. Harbeck M, Jameson A (2005) Exploring the limits of transonic shock-free airfoil design. AIAA Paper 2005-1041

  72. Reuther J, Alonso JJ, Rimlinger MJ, Jameson A (1999) Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers. Comput Fluids 28:675–700

    Article  MATH  Google Scholar 

  73. Nadarajah S, Kim SK, Jameson A, Alonso JJ (2002) Sonic boom reduction using an adjoint method for supersonic transport aircraft configuration. In: Symposium transsonicum IV, international union of theoretical and applied mechanics, September 2–6, 2002, DLR Gottingen, Germany

  74. Nadarajah S, Jameson A, Alonso JJ (2002) Sonic boom reduction using an adjoint method for wing-body configurations in supersonic flow. AIAA Paper 2002-5547

  75. Alonso JJ, Kroo IM, Jameson A (2002) Advanced algorithms for design and optimization of quiet supersonic platform. AIAA Paper 2002-0144

  76. Nadarajah S, Jameson A, Alonso JJ (2002) An adjoint method for the calculation of remote sensitivities in supersonic flow. AIAA Paper 2002-0261

  77. Taasan S, Kuruvila G, Salas MD (1992) Aerodynamic design and optimization in one-shot. AIAA Paper 91-005

  78. Kuruvila G, Taasan S, Salas MD (1995) Airfoil design and optimization by the one-shot method. AIAA Paper 95-0478

  79. Hazra SB (2004) An efficient method for aerodynamic shape optimization. AIAA Paper 2004-4628

  80. Hazra S, Schulz V, Brezillon J, Gauger N (2005) Aerodynamic shape optimization using simultaneous pseudo-timestepping. J Comput Phys 204(1):46–64

    Article  MATH  MathSciNet  Google Scholar 

  81. Hazra SB, Schulz V (2006) Simultaneous pseudo-timestepping for aerodynamic shape optimization problems with state constraints. SIAM J Sci Comput 28(3):1078–1099

    Article  MATH  MathSciNet  Google Scholar 

  82. Held C, Dervieux A (2002) One-shot airfoil optimisation without adjoint. Comput Fluids 31:1015–1049

    Article  MATH  MathSciNet  Google Scholar 

  83. Dadone A, Grossman B (2000) Progressive optimization of inverse fluid dynamic design problems. Comput Fluids 29:1–32

    Article  MATH  Google Scholar 

  84. Dadone A, Grossman B (2003) Fast convergence of inviscid fluid dynamic design problems. Comput Fluids 32:607–627

    Article  MATH  Google Scholar 

  85. Soto O, Lohner R (2004) On the computation of flow sensitivities from boundary integrals. AIAA Paper 04-0112

  86. Jameson A, Shankaran S, Martinelli L (2003) A continuous adjoint method for unstructured grids. AIAA Paper 2003-3955

  87. Kim S, Leoviriyakit K, Jameson A (2003) Aerodynamic shape and planform optimization of wings using a viscous reduced adjoint gradient formula. In: 2nd MIT conference on computational fluid and solid mechanics, Cambridge, MA, June 17–20, 2003

  88. Othmer C, de Villiers E, Weller HG (2007) Implementation of a continuous adjoint for topology optimization of ducted flows. AIAA Paper 2007-3947

  89. Mohammadi B, Pironneau O (2001) Applied shape optimization for fluids. Clarendon, Oxford

    MATH  Google Scholar 

  90. Mohammadi B, Pironneau O (2004) Shape optimization in fluid mechanics. Annu Rev Fluid Mech 36:255–279

    Article  MathSciNet  Google Scholar 

  91. Soto O, Lohner R (2001) CFD shape optimization using an incomplete-gradient adjoint formulation. Int J Numer Methods Fluids 51:735–753

    MATH  Google Scholar 

  92. Soto O, Lohner R (2000) CFD optimization using an incomplete-gradient adjoint approach. AIAA Paper 00-0666

  93. Soto O, Lohner R (2000) CFD shape optimization using an incomplete-gradient adjoint approach. In: ECCOMAS, Barcelona, September 2000

  94. Soto O, Lohner R (2001) General methodologies for incompressible flow design problems. AIAA Paper 01-1061

  95. Soto O, Lohner R (2002) A mixed adjoint formulation for incompressible rans problems. AIAA Paper 02-0451

  96. Kim HJ, Sasaki D, Obayashi S, Nakahashi K (2001) Aerodynamic optimization of supersonic transport wing using unstructured adjoint method. AIAA J 39(6)

  97. Nielsen EJ, Park MA (2005) Using an adjoint approach to eliminate mesh sensitivities in computational design. AIAA Paper 2005-0491

  98. Mavriplis DJ (2005) Formulation and multigrid solution of the discrete adjoint for optimization problems on unstructured meshes. AIAA Paper

  99. Mavriplis DJ (2006) A discrete adjoint-based approach for optimization problems on three-dimensional unstructured meshes. AIAA Paper

  100. Nielsen EJ, Anderson WK (2002) Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J 40(6):1155–1163

    Article  Google Scholar 

  101. Nielsen EJ, Anderson WK (2001) Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA Paper 2001-0596

  102. Elliot J, Peraire J (1996) Aerodynamic design using unstructured meshes. AIAA Paper 96-1941

  103. Elliot J, Peraire J (1997) Aerodynamic optimization using unstructured meshes with viscous effects. AIAA Paper 97-1849

  104. Elliot J, Peraire J (1997) Practical 3d aerodynamic design and optimization using unstructured meshes. AIAA J 35(9):1479–1485

    Article  Google Scholar 

  105. Pulliam TH, Nemec M, Holst TL, Zingg DW (2003) Comparison of genetic and adjoint methods for multi-objective viscous airfoil optimizations. AIAA Paper 2003-0298

  106. Elliot J, Peraire J (1998) Constrained, multipoint shape optimisation for complex 3d configurations. Aeronaut J 102(1017):365–376

    Google Scholar 

  107. Martins JRRA, Alonso JJ, Reuther JJ (2005) A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design. Optim Eng 6(1):33–62

    Article  MATH  Google Scholar 

  108. Leoviriyakit K, Jameson A (2004) Case studies in aero-structural wing planform and section optimization. AIAA Paper 2004-5372

  109. Leoviriyakit K, Jameson A (2004) Aero-structural wing planform optimization. AIAA Paper 2004-0029

  110. Nadarajah S, Jameson A (2002) Optimal control of unsteady flows using a time accurate method. AIAA Paper 2002-5436

  111. Nadarajah S, McMullen M, Jameson A (2002) Non-linear frequency domain based optimum shape design for unsteady three-dimensional flow. AIAA Paper 2002-2838

  112. Nadarajah S, Jameson A (2002) Optimum shape design for unsteady three-dimensional viscous flows using a non-linear frequency domain method. AIAA Paper 2002-2838

  113. Campobasso MS, Duta MC, Giles MB (2001) Adjoint methods for turbomachinery design. In: ISOABE conference, 2001

  114. Duta MC, Giles MB, Campobasso MS (2002) The harmonic adjoint approach to unsteady turbomachinery design. Int J Numer Meth Fluids 40(3–4):323–332

    Article  MATH  Google Scholar 

  115. Campobasso MS, Duta MC, Giles MB (2003) Adjoint calculation of sensitivities of turbomachinery objective functions. AIAA J Propuls Power 19(4)

  116. Giannakoglou KC, Papadimitriou DI (2006) Formulation and application of the continuous adjoint method in aerodynamics and turbomachinery. Von-Karman institute lecture series

  117. Anderson WK, Bonhaus DL (1997) Aerodynamic design on unstructured grids for turbulent flows. NASA Technical Memorandum

  118. Anderson WK, Bonhaus DL (1999) Airfoil design on unstructured grids for turbulent flows. AIAA J 37(2):185–191

    Article  Google Scholar 

  119. Nielsen EJ, Lu J, Park MA, Darmofal DL (2004) An implicit exact dual adjoint solution method for turbulent flows on unstructured grids. Comput Fluids 33:1131–1155

    Article  MATH  MathSciNet  Google Scholar 

  120. Sherman LL, Taylor III AC, Green LL, Newman PA, Hou GW, Korivi VM (1996) First- and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative methods. J Comput Phys 129:307–331

    Article  MATH  Google Scholar 

  121. Papadimitriou DI, Giannakoglou KC (2007) Direct, adjoint and mixed approaches for the computation of Hessian in airfoil design problems. Int J Numer Methods Fluids 56:1929–1943

    Article  Google Scholar 

  122. Papadimitriou DI, Giannakoglou KC (2007) Computation of the Hessian matrix in aerodynamic inverse design using continuous adjoint formulations. Comput Fluids 37:1029–1039

    Article  Google Scholar 

  123. Tortorelli D, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse Probl Eng 1(1):71–105

    Article  Google Scholar 

  124. Hou GW, Sheen J (1993) Numerical methods for second-order shape sensitivity analysis with applications to heat conduction problems. Int J Numer Methods Eng 36:417–435

    Article  MATH  Google Scholar 

  125. Le Dimet FX, Navon IM, Daescu DN (2002) Second-order information in data assimilation. Mon Weather Rev 130(3):629–648

    Article  Google Scholar 

  126. Veerse F, Auroux D, Fisher M (2000) Limited-memory BFGS diagonal preconditioners for a data assimilation problem in meteorology. Optim Eng 1:323–339

    Article  MATH  MathSciNet  Google Scholar 

  127. Daescu DN, Navon IM (2003) An analysis of a hybrid optimization method for variational data assimilation. Int J Comput Fluid Dyn 17(4):299–306

    Article  MATH  MathSciNet  Google Scholar 

  128. Arian E, Taasan S (1999) Analysis of the Hessian for aerodynamic optimization: inviscid flow. Comput Fluids 28(7):853–877

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyriakos C. Giannakoglou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadimitriou, D.I., Giannakoglou, K.C. Aerodynamic Shape Optimization Using First and Second Order Adjoint and Direct Approaches. Arch Computat Methods Eng 15, 447–488 (2008). https://doi.org/10.1007/s11831-008-9025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-008-9025-y

Keywords

Navigation