Skip to main content
Log in

Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Uncertainty quantification appears today as a crucial point in numerous branches of science and engineering. In the last two decades, a growing interest has been devoted to a new family of methods, called spectral stochastic methods, for the propagation of uncertainties through physical models governed by stochastic partial differential equations. These approaches rely on a fruitful marriage of probability theory and approximation theory in functional analysis. This paper provides a review of some recent developments in computational stochastic methods, with a particular emphasis on spectral stochastic approaches. After a review of different choices for the functional representation of random variables, we provide an overview of various numerical methods for the computation of these functional representations: projection, collocation, Galerkin approaches…. A detailed presentation of Galerkin-type spectral stochastic approaches and related computational issues is provided. Recent developments on model reduction techniques in the context of spectral stochastic methods are also discussed. The aim of these techniques is to circumvent several drawbacks of spectral stochastic approaches (computing time, memory requirements, intrusive character) and to allow their use for large scale applications. We particularly focus on model reduction techniques based on spectral decomposition techniques and their generalizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler RJ (1981) The geometry of random fields. Wiley, Chichester

    MATH  Google Scholar 

  2. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non-Newton Fluid Mech 139(3):153–176

    Article  Google Scholar 

  3. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144(2–3):98–121

    Article  Google Scholar 

  4. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  5. Babuška I, Chatzipantelidis P (2002) On solving elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 191:4093–4122

    Article  Google Scholar 

  6. Babuška I, Chleboun J (2002) Effects of uncertainties in the domain on the solution of Neumann boundary value problems in two spatial dimensions. Math Comput 71(240):1339–1370

    MATH  Google Scholar 

  7. Babuška I, Liu K-M, Tempone R (2002) Solving stochastic partial differential equations based on the experimental data. TICAM Report 02-18

  8. Babuška I, Tempone R, Zouraris GE (2002) Galerkin finite element approximations of stochastic elliptic differential equations. TICAM Report 02-38

  9. Babuška I, Tempone R, Zouraris GE (2005) Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput Methods Appl Mech Eng 194:1251–1294

    Article  MATH  Google Scholar 

  10. Babuška I, Nobile F, Tempone R (2007) A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J Numer Anal 45(3):1005–1034

    Article  MATH  MathSciNet  Google Scholar 

  11. Barrault M, Maday Y, Nguyen NC, Patera AT (2002) An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C R Math 339(9):667–672

    MathSciNet  Google Scholar 

  12. Benth FE, Gjerde J (1998) Convergence rates for finite element approximations of stochastic partial differential equations. Stoch Stoch Rep 63(3–4):313–326

    MATH  MathSciNet  Google Scholar 

  13. Berlinet A, Thomas-Agnan C (2004) Reproducing kernel Hilbert spaces in probability and statistics. Kluwer, Dordrecht

    MATH  Google Scholar 

  14. Berveiller M (2005) Stochastic finite elements: intrusive and non-intrusive methods for reliability analysis. PhD thesis, Université Blaise Pascal, Clermont-Ferrand

  15. Berveiller M, Sudret B, Lemaire M (2006) Stochastic finite element: a non intrusive approach by regression. Eur J Comput Mech 15:81–92

    MATH  Google Scholar 

  16. Besold P (2000) Solutions to stochastic partial differential equations as elements of tensor product spaces. PhD thesis, Georg-August-Universität, Göttingen

  17. Blatman G, Sudret B (2007) Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach. C R Méc 336(6):518–523

    Google Scholar 

  18. Blatman G, Sudret B, Berveiller M (2007) Quasi random numbers in stochastic finite element analysis. Méc Ind 8:289–297

    Article  Google Scholar 

  19. Brézis H (1983) Analyse fonctionnelle: théorie et applications. Masson, Paris

    MATH  Google Scholar 

  20. Bungartz H-J, Griebel M (2004) Sparse grids. Acta Numer 13:147–269

    Article  MathSciNet  Google Scholar 

  21. Caflisch RE (1998) Monte Carlo and quasi-Monte Carlo methods. Acta Numer 7:1–49

    Article  MathSciNet  Google Scholar 

  22. Cameron RH, Martin WT (1947) The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann Math (2) 48(2):385–392

    Article  MathSciNet  Google Scholar 

  23. Canuto C, Kozubek T (2007) A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer Math 107(2):257–293

    Article  MATH  MathSciNet  Google Scholar 

  24. Canuto C, Hussaini MY, Quateroni A, Zang TA (1988) Spectral methods in fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  25. Cao Y (2006) On the rate of convergence of Wiener-Ito expansion for generalized random variables. Stochastics 78:179–187

    MATH  MathSciNet  Google Scholar 

  26. Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197(5):400–413

    Article  MathSciNet  Google Scholar 

  27. Choi S, Grandhi RV, Canfield RA (2004) Structural reliability under non-Gaussian stochastic behavior. Comput Struct 82:1113–1121

    Article  Google Scholar 

  28. Choi S, Grandhi RV, Canfield RA, Pettit CL (2004) Polynomial chaos expansion with Latin hypercube sampling for estimating response variability. AIAA J 42(6):1191–1198

    Article  Google Scholar 

  29. Christakos G (1992) Random field models in earth sciences. Academic Press, San Diego

    Google Scholar 

  30. Ciarlet PG (1978) The finite element method for elliptic problems. North-Holland, Amsterdam

    MATH  Google Scholar 

  31. Courant R, Hilbert D (1989) Methods of mathematical physics. Wiley, Chichester

    Google Scholar 

  32. Dautray R, Lions J-L (1990) Mathematical analysis and numerical methods for science and technology, vol 3. Spectral theory and applications. Springer, Berlin

    Google Scholar 

  33. Deb M, Babuška I, Oden JT (2001) Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput Methods Appl Mech Eng 190:6359–6372

    Article  MATH  Google Scholar 

  34. Debusschere BJ, Najm HN, Pebray PP, Knio OM, Ghanem RG, Le Maitre OP (2004) Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J Sci Comput 26(2):698–719

    Article  MATH  MathSciNet  Google Scholar 

  35. Dennis JE, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia

    MATH  Google Scholar 

  36. Ditlevsen O, Madsen H (1996) Structural reliability methods. Wiley, Chichester

    Google Scholar 

  37. Doob JL (1953) Stochastic processes. Wiley, Chichester

    MATH  Google Scholar 

  38. Doostan A, Ghanem R, Red-Horse J (2007) Stochastic model reductions for chaos representations. Comput Methods Appl Mech Eng 196(37–40):3951–3966

    Article  MathSciNet  Google Scholar 

  39. Frauenfelder P, Schwab C, Todor RA (2005) Finite elements for elliptic problems with stochastic coefficients. Comput Methods Appl Mech Eng 194(2–5):205–228

    Article  MATH  MathSciNet  Google Scholar 

  40. Gel’fand IM, Vilenkin NY (1964) Generalized functions—volume 4: applications of harmonic analysis. Academic Press, New York

    Google Scholar 

  41. Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithms 18:209–232

    Article  MATH  MathSciNet  Google Scholar 

  42. Gerstner T, Griebel M (2003) Dimension-adaptive tensor-product quadrature. Computing 71(1):65–87

    Article  MATH  MathSciNet  Google Scholar 

  43. Ghanem R (1999) Ingredients for a general purpose stochastic finite elements implementation. Comput Methods Appl Mech Eng 168:19–34

    Article  MATH  MathSciNet  Google Scholar 

  44. Ghanem R (1999) Stochastic finite elements for heterogeneous media with multiple random non-Gaussian properties. ASCE J Eng Mech 125:24–40

    Google Scholar 

  45. Ghanem R, Kruger RM (1996) Numerical solution of spectral stochastic finite element systems. Comput Methods Appl Mech Eng 129:289–303

    Article  MATH  Google Scholar 

  46. Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, Berlin

    MATH  Google Scholar 

  47. Ghanem R, Saad G, Doostan A (2007) Efficient solution of stochastic systems: application to the embankment dam problem. Struct Saf 29(3):238–251

    Article  Google Scholar 

  48. Ghiocel D, Ghanem R (2002) Stochastic finite-element analysis of seismic soil-structure interaction. ASCE J Eng Mech 128(1):66–77

    Article  Google Scholar 

  49. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  50. Gosselet P, Rey C (2002) On a selective reuse of Krylov subspaces in Newton-Krylov approaches for nonlinear elasticity. In: Domain decomposition methods in science and engineering, pp 419–426

  51. Grigoriu M (1995) Applied non-Gaussian processes. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  52. Grigoriu M (2002) Stochastic calculus—applications in science and engineering. Birkhäuser, Basel

    MATH  Google Scholar 

  53. Gutiérrez MA, Krenk S (2006) Stochastic finite element methods. In: Stein E (eds) Encyclopedia of computational mechanics, vol 2: solids and structures. Wiley, Chichester, pp 657–681

    Google Scholar 

  54. Holden H, Øksendal B, Ubøe J, Zhang T (1996) Stochastic partial differential equations. Birkhäuser, Basel

    MATH  Google Scholar 

  55. Janson S (1997) Gaussian Hilbert spaces. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  56. Karhunen K (1946) Zur spektraltheorie stochastischer prozesse. Ann Acad Sci Fenn, 34 (1946)

  57. Keese A (2003) Numerical solution of systems with stochastic uncertainties—a general purpose framework for stochastic finite elements. PhD thesis, Technische Universität Braunschweig, Brunswick

  58. Keese A (2003) A review of recent developments in the numerical solution of stochastic PDES (stochastic finite elements). Technical Report 2003-6, Institute of Scientific Computing, Tech Univ Braunschweig, Germany. http://opus.tu-bs.de/opus/volltexte/2003/504/

  59. Keese A, Mathhies HG (2003) Numerical methods and Smolyak quadrature for nonlinear stochastic partial differential equations. SIAM J Sci Comput, 83

  60. Keese A, Mathhies HG (2004) Adaptivity and sensitivity for stochastic problems. In: Spanos PD, Deodatis G (eds) Computational stochastic mechanics, vol 4. Millpress, Rotterdam, pp 311–316

    Google Scholar 

  61. Keese A, Mathhies HG (2005) Hierarchical parallelisation for the solution of stochastic finite element equations. Comput Methods Appl Mech Eng 83:1033–1047

    Google Scholar 

  62. Khuri A, Cornell J (1987) Response surfaces: designs and analyses. Dekker, New York

    MATH  Google Scholar 

  63. Kleiber M, Hien TD (1992) The stochastic finite element method. Basic perturbation technique and computer implementation. Wiley, Chichester

    MATH  Google Scholar 

  64. Kloeden PE, Platen E (1995) Numerical solution of stochastic differential equations. Springer, Berlin

    Google Scholar 

  65. Krée P, Soize C (1986) Mathematics of random phenomena. Reidel, Dordrecht

    MATH  Google Scholar 

  66. Ladevèze P (1999) Nonlinear computational structural mechanics—new approaches and non-incremental methods of calculation. Springer, Berlin

    MATH  Google Scholar 

  67. Ladevèze P, Florentin E (2006) Verification of stochastic models in uncertain environments using the constitutive relation error method. Comput Methods Appl Mech Eng 196(1–3):225–234

    Article  MATH  Google Scholar 

  68. Ladevèze P, Nouy A (2003) On a multiscale computational strategy with time and space homogenization for structural mechanics. Comput Methods Appl Mech Eng 192:3061–3087

    Article  MATH  Google Scholar 

  69. Le Bris C, Lelievre T, Maday Y (2008) Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. arXiv:0811.0474v1

  70. Maday Y, Nguyen NC, Patera AT, Boyaval S, Le Bris C (2008) A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable robin coefficient. Technical Report Rapport de recherche RR-6617, INRIA

  71. Le Maître OP, Knio OM, Najm HN, Ghanem R (2001) A stochastic projection method for fluid flow. i. Basic formulation. J Comput Phys 173:481–511

    Article  MATH  MathSciNet  Google Scholar 

  72. Le Maître OP, Reagan MT, Najm HN, Ghanem RG, Knio OM (2002) A stochastic projection method for fluid flow. ii. Random process. J Comput Phys 181:9–44

    Article  MATH  MathSciNet  Google Scholar 

  73. Le Maître OP, Knio OM, Najm HN, Ghanem RG (2004) Uncertainty propagation using Wiener-Haar expansions. J Comput Phys 197(1):28–57

    Article  MATH  MathSciNet  Google Scholar 

  74. Le Maître OP, Najm HN, Ghanem RG, Knio OM (2004) Multi-resolution analysis of wiener-type uncertainty propagation schemes. J Comput Phys 197(2):502–531

    Article  MATH  MathSciNet  Google Scholar 

  75. Levy A, Rubinstein J (1999) Some properties of smoothed principal component analysis for functional data. J Opt Soc Am 16(1):28–35

    Article  MathSciNet  Google Scholar 

  76. Loève M (1945) Fonctions aléatoires du second ordre. C R Acad Sci Paris 220

  77. Loève M (1977) Probability theory. I, 4th edn. Graduate texts in mathematics, vol 45. Springer, New York

    MATH  Google Scholar 

  78. Loève M (1978) Probability theory. II, 4th edn. Graduate texts in mathematics, vol 46. Springer, New York

    MATH  Google Scholar 

  79. Machiels L, Maday Y, Patera AT (2001) Output bounds for reduced-order approximations of elliptic partial differential equations. Comput Methods Appl Mech Eng 190(26–27):3413–3426

    Article  MATH  MathSciNet  Google Scholar 

  80. Maday Y, Patera AT, Turinici G (2002) Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations. C R Math 335(3):289–294

    MATH  MathSciNet  Google Scholar 

  81. Mathelin L, Le Maître O (2007) Dual-based a posteriori error estimate for stochastic finite element methods. Commun Appl Math Comput Sci 2:83–116

    MATH  MathSciNet  Google Scholar 

  82. Matthies HG (2007) Uncertainty quantification with stochastic finite elements. In Stein E (eds) Encyclopedia of computational mechanics, vol 1. Wiley, Chichester. Chap 27

    Google Scholar 

  83. Matthies HG, Keese A (2005) Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput Methods Appl Mech Eng 194(12–16):1295–1331

    Article  MATH  MathSciNet  Google Scholar 

  84. Matthies HG, Brenner CE, Bucher CG, Soares CG (1997) Uncertainties in probabilistic numerical analysis of structures and solids—stochastic finite elements. Struct Saf 19(3):283–336

    Article  Google Scholar 

  85. Melchers R-E (1999) Structural reliability analysis and prediction. Wiley, Chichester

    Google Scholar 

  86. Nair PB (2001) On the theoretical foundations of stochastic reduced basis methods. AIAA paper 2001-1677

  87. Nair PB, Keane AJ (2002) Stochastic reduced basis methods. AIAA J 40(8):1653–1664

    Article  Google Scholar 

  88. Niederreiter H (1992) Random number generation and quasi-Monte Carlo methods. SIAM, Philadelphia

    MATH  Google Scholar 

  89. Nouy A (2007) A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Comput Methods Appl Mech Eng 196(45–48):4521–4537

    Article  MathSciNet  Google Scholar 

  90. Nouy A (2007) Méthode de construction de bases spectrales généralisées pour l’approximation de problèmes stochastiques. Méc Ind 8(3):283–288

    Article  Google Scholar 

  91. Nouy A (2008) Generalized spectral decomposition method for solving stochastic finite element equations: invariant subspace problem and dedicated algorithms. Comput Methods Appl Mech Eng 197:4718–4736

    Article  MathSciNet  Google Scholar 

  92. Nouy A, Ladevèze P (2004) Multiscale computational strategy with time and space homogenization: a radial-type approximation technique for solving micro problems. Int J Multiscale Comput Eng 170(2):557–574

    Article  Google Scholar 

  93. Nouy A, Le Maître O (2009) Generalized spectral decomposition method for stochastic non linear problems. J Comput Phys 228(1):202–235

    Article  MATH  MathSciNet  Google Scholar 

  94. Nouy A, Schoefs F, Moës N (2007) X-SFEM, a computational technique based on X-FEM to deal with random shapes. Eur J Comput Mech 16(2):277–293

    Google Scholar 

  95. Nouy A, Clément A, Schoefs F, Moës N (2008) An extended stochastic finite element method for solving stochastic partial differential equations on random domains. Comput Methods Appl Mech Eng 197:4663–4682

    Article  Google Scholar 

  96. Novak E, Ritter K (1999) Simple cubature formulas with high polynomial exactness. Constr Approx 15:499–522

    Article  MATH  MathSciNet  Google Scholar 

  97. Øksendal B (1998) Stochastic differential equations. An introduction with applications, 5th edn. Springer, Berlin

    Google Scholar 

  98. Papoulis A (1984) Probability, random variables, and stochastic processes. McGraw-Hill, New York

    MATH  Google Scholar 

  99. Pellissetti MF, Ghanem RG (2000) Iterative solution of systems of linear equations arising in the context of stochastic finite elements. Adv Eng Softw 31:607–616

    Article  MATH  Google Scholar 

  100. Petras K (2003) Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer Math 93:729–753

    Article  MATH  MathSciNet  Google Scholar 

  101. Powell CE, Elman HC (2007) Block-diagonal preconditioning for the spectral stochastic finite elements systems. Technical Report TR-4879, University of Maryland, Dept of Computer Science

  102. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in C—the art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  103. Puig B, Poirion F, Soize C (2002) Non-Gaussian simulation using Hermite polynomial expansion: convergences. Probab Eng Mech 17:253–264

    Article  Google Scholar 

  104. Reagan MT, Najm HN, Ghanem RG, Knio OM (2003) Uncertainty quantification in reacting flow simulations through non-intrusive spectral projection. Combust Flames 132:545–555

    Article  Google Scholar 

  105. Riesz F, Sz Nagy B (1990) Functional analysis. Dover, New York

    MATH  Google Scholar 

  106. Risler F, Rey C (2000) Iterative accelerating algorithms with Krylov subspaces for the solution to large-scale nonlinear problems. Numer Algorithms 23:1–30

    Article  MATH  MathSciNet  Google Scholar 

  107. Rozanov YA (1998) Random fields and stochastic partial differential equations. Kluwer, Dordrecht

    MATH  Google Scholar 

  108. Saad Y (1992) Numerical methods for large eigenvalue problems. Halstead Press, New York

    MATH  Google Scholar 

  109. Saad Y (1997) Analysis of augmented Krylov subspace methods. SIAM J Matrix Anal Appl 18(2):435–449

    Article  MATH  MathSciNet  Google Scholar 

  110. Saad Y (2000) Iterative methods for sparse linear systems, 3rd edn. PWS, Boston

    Google Scholar 

  111. Sachdeva SK, Nair PB, Keane AJ (2006) Comparative study of projection schemes for stochastic finite element analysis. Comput Methods Appl Mech Eng 195(19–22):2371–2392

    Article  MATH  MathSciNet  Google Scholar 

  112. Sachdeva SK, Nair PB, Keane AJ (2006) Hybridization of stochastic reduced basis methods with polynomial chaos expansions. Probab Eng Mech 21(2):182–192

    Article  Google Scholar 

  113. Sameh A, Tong Z (2000) The trace minimization method for the symmetric generalized eigenvalue problem. J Comput Appl Math 123:155–175

    Article  MATH  MathSciNet  Google Scholar 

  114. Schüeller GI (1997) A state-of-the-art report on computational stochastic mechanics. Probab Eng Mech 14:197–321

    Article  Google Scholar 

  115. Schüeller GI, Spanos PD (eds) (2001) Monte Carlo simulation. Balkema, Rotterdam

    Google Scholar 

  116. Shinozuka M, Deodatis G (1997) Simulation of stochastic processes and fields. Probab Eng Mech 14:203–207

    Google Scholar 

  117. Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Sov Math Dokl 3:240–243

    Google Scholar 

  118. Sobol IM (1998) On quasi-Monte Carlo integrations. Math Comput Simul 47:103–112

    Article  MathSciNet  Google Scholar 

  119. Soize C (2006) Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators. Comput Methods Appl Mech Eng 195(1–3):26–64

    Article  MATH  MathSciNet  Google Scholar 

  120. Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J Sci Comput 26(2):395–410

    Article  MATH  MathSciNet  Google Scholar 

  121. Stefanou G, Nouy A, Clément A (2009) Identification of random shapes from images through polynomial chaos expansion of random level-set functions. Int J Numer Methods Eng. doi:10.1002/nme.2546

  122. Strang G, Fix GJ (1986) An analysis of the finite element method. Wellesley-Cambridge Press, Wellesley

    Google Scholar 

  123. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979

    Article  Google Scholar 

  124. Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability. A state-of-the-art report. Technical Report UCB/SEMM-2000/08, Department of Civil & Environmental Engineering, University of California, Berkeley, CA

  125. Vanmarcke E (1988) Random fields: analysis and synthesis. MIT Press, Cambridge

    Google Scholar 

  126. Walsh JB (1984) An introduction to stochastic partial differential equations. In: Ecole d’été de probabilités de Saint Flour XIV. Springer, Berlin

    Google Scholar 

  127. Wan X, Karniadakis GE (2005) An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J Comput Phys 209:617–642

    Article  MATH  MathSciNet  Google Scholar 

  128. Wan X, Karniadakis GE (2006) Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J Sci Comput 28(3):901–928

    Article  MATH  MathSciNet  Google Scholar 

  129. Webster CG, Nobile F, Tempone R (2007) A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J Numer Anal 46(5):2309–2345

    MathSciNet  Google Scholar 

  130. Wiener N (1938) The homogeneous chaos. Am J Math 60:897–936

    Article  MathSciNet  Google Scholar 

  131. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330

    Article  Google Scholar 

  132. Xiu DB, Karniadakis GE (2002) The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Nouy.

Additional information

This work is supported by the French National Research Agency (grant ANR-06-JCJC-0064) and by GdR MoMaS with partners ANDRA, BRGM, CEA, CNRS, EDF, IRSN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nouy, A. Recent Developments in Spectral Stochastic Methods for the Numerical Solution of Stochastic Partial Differential Equations. Arch Computat Methods Eng 16, 251–285 (2009). https://doi.org/10.1007/s11831-009-9034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-009-9034-5

Keywords

Navigation