Skip to main content
Log in

Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper revisits a powerful discretization technique, the Proper Generalized Decomposition—PGD, illustrating its ability for solving highly multidimensional models. This technique operates by constructing a separated representation of the solution, such that the solution complexity scales linearly with the dimension of the space in which the model is defined, instead the exponentially-growing complexity characteristic of mesh based discretization strategies. The PGD makes possible the efficient solution of models defined in multidimensional spaces, as the ones encountered in quantum chemistry, kinetic theory description of complex fluids, genetics (chemical master equation), financial mathematics, … but also those, classically defined in the standard space and time, to which we can add new extra-coordinates (parametric models, …) opening numerous possibilities (optimization, inverse identification, real time simulations, …).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou Y, Pironneau O (2005) Computational methods for option pricing. SIAM frontiers in applied mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  2. Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147

    Article  MATH  Google Scholar 

  3. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176

    Article  MATH  Google Scholar 

  4. Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: transient simulation using space-time separated representations. J Non-Newton Fluid Mech 144:98–121

    Article  MATH  Google Scholar 

  5. Ammar A, Chinesta F (2008) Circumventing curse of dimensionality in the solution of highly multidimensional models encountered in quantum mechanics using meshfree finite sums decomposition. In: Lecture notes on computational science and engineering. Springer, Berlin, pp 1–17

    Google Scholar 

  6. Ammar A, Normandin M, Daim F, Gonzalez D, Cueto E, Chinesta F (2010) Non-incremental strategies based on separated representations: Applications in computational rheology. Commun Math Sci 8(3):671–695

    Google Scholar 

  7. Chinesta F, Ammar A, Cueto E (2010) On the use of Proper Generalized Decompositions for solving the multidimensional chemical master equation. Eur J Comput Mech 19:53–64

    Google Scholar 

  8. Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199:1872–1880

    Article  Google Scholar 

  9. Ammar A, Chinesta F, Cueto E (2010) Coupling finite elements and separated representations. Int J Multiscale Comput Eng (in press)

  10. Beylkin G, Mohlenkamp M (2005) Algorithms for numerical analysis in high dimensions. SIAM J Sci Comput 26(6):2133–2159

    Article  MATH  MathSciNet  Google Scholar 

  11. Bird BB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. In: Kinetic theory, vol 2. Wiley, New York

    Google Scholar 

  12. Bungartz HJ, Griebel M (2004) Sparse grids. Acta Numer 13:1–123

    Article  MathSciNet  Google Scholar 

  13. Cancès E, Defranceschi M, Kutzelnigg W, Le Bris C, Maday Y (2003) Computational quantum chemistry: a primer. Handbook of numerical analysis, vol X. Elsevier, Amsterdam, pp 3–270

    Google Scholar 

  14. Chaidron G, Chinesta F (2002) On the steady solution of non-linear advection problems in steady recirculating flows. Comput Methods Appl Mech Eng 191:1159–1172

    Article  MATH  Google Scholar 

  15. Chinesta F, Chaidron G (2001) On the steady solution of linear advection problems in steady recirculating flows. J Non Newton Fluid Mechanics 98:65–80

    Article  MATH  Google Scholar 

  16. Chinesta F, Chaidron G (2003) A characteristics strategy for solving advection equations in 2D steady flows containing recirculating areas. Comput Methods Appl Mech Eng 192:37–38, 4217–4235

    Article  Google Scholar 

  17. Chinesta F, Ammar A, Falco A, Laso M (2007) On the reduction of stochastic kinetic theory models of complex fluids. Model Simul Mater Sci Eng 15:639–652

    Article  Google Scholar 

  18. Chinesta F, Ammar A, Lemarchand F, Beauchene P, Boust F (2008) Alleviating mesh constraints: Model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197(5):400–413

    Article  MATH  MathSciNet  Google Scholar 

  19. Chinesta F, Ammar A, Joyot P (2008) The nanometric and micrometric scales of the structure and mechanics of materials revisited: An introduction to the challenges of fully deterministic numerical descriptions. Int J Multiscale Comput Eng 6(3):191–213

    Article  Google Scholar 

  20. Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9):1114–1132

    Article  MATH  MathSciNet  Google Scholar 

  21. Ammar A, Chinesta F, Falco A (2010) On the convergence of a greedy rank-one update algorithm for a class of linear systems. Arch Comput Methods Eng (submitted). doi:10.1007/s11831-010-9048-z

  22. Donea J, Huerta A (2002) Finite element methods for flow problems. Wiley, New York

    Google Scholar 

  23. Fang J, Kroger M, Ottinger HC (2000) A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows. J Rheol 40:1293–1318

    Article  Google Scholar 

  24. Fish J, Guttal R (1996) The s-version of the finite element method for laminated composites. Int J Numer Methods Eng 39:3641–3662

    Article  MATH  Google Scholar 

  25. Gonzalez D, Ammar A, Chinesta F, Cueto E (2010) Recent advances in the use of separated representations. Int J Numer Methods Eng (in press)

  26. Heinrich JC, Zienkiewicz OC (1979) The finite element method and upwinding techniques in the numerical solution of convection dominated flow problems. In: AMD, vol 34. Am Soc Mech Eng, New York, pp 105–136

    Google Scholar 

  27. Hughes TJR, Brooks AN (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Hughes TJR (ed) Finite element methods for convection dominated flows. AMD, vol 34. American Society of Mechanical Engineering, New York

    Google Scholar 

  28. Joyot P, Bonithon G, Chinesta F, Villon P (2010) Non-incremental boundary element discretization of parabolic models based on the use of proper generalized decompositions. Eng Anal Bound Elements (submitted). doi:10.1016/j.enganabound.2010.07.007

  29. Ladeveze P (1999) Nonlinear computational structural mechanics. Springer, New York

    MATH  Google Scholar 

  30. Ladeveze P, Passieux JCh, Neron D (2010) The LATIN multiscale computational method and the proper orthogonal decomposition. Comput Methods Appl Mech Eng 199(21–22):1287–1296

    Article  MathSciNet  Google Scholar 

  31. Levy A, Le Corre S, Poitou A, Soccard E (2010) Ultrasonic welding of thermoplastic composites, modeling of the process using time homogenization. Int J Multiscale Comput Eng (in press)

  32. Nouy A, Ladeveze P (2004) Multiscale computational strategy with time and space homogenization: A radial-type approximation technique for solving microproblems. Int J Multiscale Comput Eng 170(2)

  33. Maday Y, Ronquist EM (2004) The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput 26(1):240–258

    Article  MATH  MathSciNet  Google Scholar 

  34. Mokdad B, Pruliere E, Ammar A, Chinesta F (2007) On the simulation of kinetic theory models of complex fluids using the Fokker-Planck approach. Appl Rheol 17(2):1–14

    Google Scholar 

  35. Mokdad B, Ammar A, Normandin M, Chinesta F, Clermont JR (2010) A fully deterministic micro-macro simulation of complex flows involving reversible network fluid models. Math Comput Simul 80:1936–1961

    Article  MATH  Google Scholar 

  36. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Programs Biomed 91:223–231

    Article  Google Scholar 

  37. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2010) Model order reduction for hyperelastic materials. Int J Numer Methods Eng 81(9):1180–1206

    MATH  MathSciNet  Google Scholar 

  38. Niroomandi S, Alfaro I, Cueto E, Chinesta F (2010) Accounting for large deformations in real-time simulations of soft tissues based on reduced order models. Comput Methods Programs Biomed (submitted)

  39. Park HM, Cho DH (1996) The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems. Chem Eng Sci 51:81–98

    Article  Google Scholar 

  40. Pruliere E, Ammar A, El Kissi N, Chinesta F (2009) Recirculating flows involving short fiber suspensions: Numerical difficulties and efficient advanced micro-macro solvers. Arch Comput Methods Eng State Art Rev 16:1–30

    Article  MATH  Google Scholar 

  41. Pruliere E, Ferec J, Chinesta F, Ammar A (2010) An efficient reduced simulation of residual stresses in composites forming processes. Int J Mater Form 3(2):1341–1352

    Article  Google Scholar 

  42. Pruliere E, Chinesta F, Ammar A (2010) On the deterministic solution of parametric models by using the proper generalized decomposition. Math Comput Simul (submitted). doi:10.1016/j.matcom.2010.07.015

  43. Rank E, Krause R (1987) A multiscale finite element method. Comput Struct 64(1–4):139–144

    Google Scholar 

  44. Rassias TM, Simsa J (1995) Finite sums decompositions in mathematical analysis. Wiley, New York

    MATH  Google Scholar 

  45. Rvachev VL, Sheiko TI (1995) R-functions in boundary value problems in mechanics. Appl Mech Rev 48:151–188

    Article  Google Scholar 

  46. Ryckelynck D, Hermanns L, Chinesta F, Alarcon E (2005) An efficient “a priori” model reduction for boundary element models. Eng Anal Bound Elem 29:796–801

    Article  MATH  Google Scholar 

  47. Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202:346–366

    Article  MATH  Google Scholar 

  48. Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the a priori model reduction: overview and recent developments. Arch Comput Methods Eng State Art Rev 13(1):91–128

    Article  MATH  MathSciNet  Google Scholar 

  49. Sukumar N, Chopp D, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Chinesta.

Additional information

Research partially supported by the Spanish Ministry of Science ad Innovation through grant CICYT-DPI2008-00918.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chinesta, F., Ammar, A. & Cueto, E. Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models. Arch Computat Methods Eng 17, 327–350 (2010). https://doi.org/10.1007/s11831-010-9049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-010-9049-y

Keywords

Navigation