Skip to main content
Log in

High-Resolution Finite Volume Methods on Unstructured Grids for Turbulence and Aeroacoustics

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper we focus on the application of a higher-order finite volume method for the resolution of Computational Aeroacoustics problems. In particular, we present the application of a finite volume method based in Moving Least Squares approximations in the context of a hybrid approach for low Mach number flows. In this case, the acoustic and aerodynamic fields can be computed separately. We focus on two kinds of computations: turbulent flow and aeroacoustics in complex geometries. Both fields require very accurate methods to capture the fine features of the flow, small scales in the case of turbulent flows and very low-amplitude acoustic waves in the case of aeroacoustics. On the other hand, the use of unstructured grids is interesting for real engineering applications, but unfortunately, the accuracy and efficiency of the numerical methods developed for unstructured grids is far to reach the performance of those methods developed for structured grids. In this context, we propose the FV-MLS method as a tool for accurate CAA computations on unstructured grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Godunov SK (1959) A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics. Mat Sb 47(89):271–306

    MathSciNet  Google Scholar 

  2. Lele SK (1992) Compact finite difference schemes with spectral-like resolution. J Comput Phys 103:16–42

    Article  MathSciNet  MATH  Google Scholar 

  3. Rizzetta DP, Visbal MR, Blaisdell GA (1999) Application of a high-order compact difference scheme to large-eddy and direct numerical simulation. AIAA paper 99-3714

  4. Visbal MR, Gaitonde DV (1999) High-order-accurate methods for complex unsteady subsonic flows. AIAA J 37(10):1231–1239

    Article  Google Scholar 

  5. Visbal MR, Rizzeta DP (2002) Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes. J Fluids Eng 124:836–847

    Article  Google Scholar 

  6. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2007) Spectral methods. Evolution to complex geometries and applications to fluid dynamics. Springer, New York

    MATH  Google Scholar 

  7. Karniadakis GE, Sherwin SJ (2005) Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, New York

    MATH  Google Scholar 

  8. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, New York

    Google Scholar 

  9. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  10. Piegl L, Tiller W (1997) The NURBS book, 2nd edn. Springer, New York

    Google Scholar 

  11. Lipton S, Evans JA, Bazilevs Y, Elguedj T, Hughes TJR (2010) Robustness of isogeometric structural discretizations under severe mesh distortion. Comput Methods Appl Mech Eng 199:357–373

    Article  Google Scholar 

  12. Cottrell JA, Reali A, Bazilevs Y, Hughes TJR (2006) Isogeometric analysis of structural vibrations. Comput Methods Appl Mech Eng 195:5257–5296

    Article  MathSciNet  MATH  Google Scholar 

  13. Van Leer B (1979) Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J Comput Phys 32:101–136

    Article  Google Scholar 

  14. Van Leer B (1982) Flux vector splitting for the Euler equations. Lecture notes in physics, vol 170. Springer, Berlin

    Google Scholar 

  15. Roe PL (1981) Approximate Riemann solvers, parameter vectores and difference schemes. J Comput Phys 43:357–372

    Article  MathSciNet  MATH  Google Scholar 

  16. Venkatakrishnan V (1995) Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. J Comput Phys 118:120–130

    Article  MATH  Google Scholar 

  17. Barth TJ (1995) Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations. VKI lecture series 1994–95

    Google Scholar 

  18. Barth TJ, Frederickson PO (1990) Higher-order solution of the Euler equations on unstructured grids using quadratic reconstruction. AIAA paper 90-0013

  19. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. AIAA paper 89-0366

  20. Colella P, Woodward P (1984) The piecewise parabolic method (PPM) for gas-dynamical simulations. J Comput Phys 54:174–201

    Article  MathSciNet  MATH  Google Scholar 

  21. Jameson A, Baker TJ (1983) Solution of the Euler equations for complex configurations. AIAA paper 83-1929

  22. Frink NT (1992) Upwind scheme for solving the Euler equations on unstructured tetrahedral meshes. AIAA J 30:70

    Article  MATH  Google Scholar 

  23. Ollivier-Gooch CF, Van Altena M (2002) A high-order accurate unstructured mesh finite volume scheme for the advection-diffusion equation. J Comput Phys 181:729–752

    Article  MATH  Google Scholar 

  24. Bassi F, Rebay S (1997) A higher-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138:251–285

    Article  MathSciNet  MATH  Google Scholar 

  25. Bassi F, Rebay S (1997) A higher-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J Comput Phys 131:267–279

    Article  MathSciNet  MATH  Google Scholar 

  26. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138:251–285

    Article  MathSciNet  MATH  Google Scholar 

  27. Cockburn B, Shu C-W (1998) The local discontinuous Galerkin finite element method for convection-diffusion systems. SIAM J Numer Anal 35:2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  28. Cockburn B, Shu C-W (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math Comput 52:411–435

    MathSciNet  MATH  Google Scholar 

  29. Cockburn B, Lin SY, Shu C-W (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J Comput Phys 84:90–113

    Article  MathSciNet  MATH  Google Scholar 

  30. Cockburn B, Hou S, Shu C-W (1990) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math Comput 54:545–581

    MathSciNet  MATH  Google Scholar 

  31. Cockburn B, Shu C-W (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35:2440–2463

    Article  MathSciNet  MATH  Google Scholar 

  32. Cockburn B, Kanschat G, Perugia I, Schötzau D (2001) Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J Numer Anal 39(1):264–285

    Article  MathSciNet  MATH  Google Scholar 

  33. Cockburn B, Shu C-W (2001) Runge-Kutta discontinuous Galerkin methods for convection dominated problems. J Sci Comput 16:173–261

    Article  MathSciNet  MATH  Google Scholar 

  34. Crivellini A, Bassi F (2003) A three-dimensional parallel discontinuous Galerkin solver for acoustic propagation studies. International Journal of aeroacoustics 2:157–174

    Article  Google Scholar 

  35. Dolejší V (2004) On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations. Int J Numer Methods Fluids 45:1083–1106

    Article  MATH  Google Scholar 

  36. Zhang M, Shu C-W (2003) An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math Models Methods Appl Sci 13(3):395–413

    Article  MathSciNet  MATH  Google Scholar 

  37. Peraire J, Persson P-O (2008) The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J Sci Comput 30(4):1806–1824

    Article  MathSciNet  Google Scholar 

  38. Persson P-O, Peraire J (2008) Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J Sci Comput 30(6):2709–2733

    Article  MathSciNet  MATH  Google Scholar 

  39. Harten A, Osher S (1987) Uniformly high order accurate non-oscillatory schemes I. SIAM J Numer Anal 24:279–309

    Article  MathSciNet  MATH  Google Scholar 

  40. Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order essentially non-oscillatory schemes III. J Comput Phys 71:231–303

    Article  MathSciNet  MATH  Google Scholar 

  41. Hu CQ, Shu CW (1999) Weighted essentially non-oscillatory schemes on triangular meshes. J Comput Phys 150:97–127

    Article  MathSciNet  MATH  Google Scholar 

  42. Shu CW, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77:439–471

    Article  MathSciNet  MATH  Google Scholar 

  43. Shu CW, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J Comput Phys 83:32–78

    Article  MathSciNet  MATH  Google Scholar 

  44. Shu CW (1997) Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. ICASE Report 97-65

  45. Shu CW, Osher S (1989) Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J Comput Phys 83:32–78

    Article  MathSciNet  MATH  Google Scholar 

  46. Abgrall R (1994) On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation. J Comput Phys 114:45–58

    Article  MathSciNet  MATH  Google Scholar 

  47. Borges R, Carmona M, Costa B, Don WS (2008) An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys 227(6):3101–3211

    Article  MathSciNet  Google Scholar 

  48. Capdeville G (2008) A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes. J Comput Phys 227:2977–3014

    Article  MathSciNet  MATH  Google Scholar 

  49. Dumbser M, Käser M (2007) Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723

    Article  MathSciNet  MATH  Google Scholar 

  50. Dumbser M, Käser M, Titarev VA, Toro EF (2007) Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 226:204–243

    Article  MathSciNet  MATH  Google Scholar 

  51. Henrick AK, Aslam TD, Powers JM (2005) Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J Comput Phys 207:542–567

    Article  MATH  Google Scholar 

  52. Sonar T (1997) On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection. Comput Methods Appl Mech Eng 140:157–181

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang YT, Shu CW (2009) Third order WENO scheme on three dimensional tetrahedral meshes. Commun Comput Phys 5:836–848

    MathSciNet  Google Scholar 

  54. Wang ZJ (2002) Spectral (finite) volume method for conservation laws on unstructured grids. Basic formulation. J Comput Phys 178:210–251

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang ZJ, Liu Y (2002) Spectral (finite) volume method for conservation laws on unstructured grids II: extension to two-dimensional scalar equation. J Comput Phys 179:665–697

    Article  MathSciNet  MATH  Google Scholar 

  56. Wang ZJ, Liu Y (2004) Spectral (finite) volume method for conservation laws on unstructured grids III: one-dimensional systems and partition optimization. J Sci Comput 20:137–157

    Article  MathSciNet  MATH  Google Scholar 

  57. Wang ZJ, Liu Y (2004) Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional systems. J Comput Phys 194:716–741

    Article  MathSciNet  MATH  Google Scholar 

  58. Liu Y, Vinokurb M, Wang ZJ (2006) Spectral (finite) volume method for conservation laws on unstructured grids V: extension to three-dimensional systems. J Comput Phys 212(2):454–472

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang ZJ, Liu Y (2006) Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow. J Comput Phys 215:41–58

    Article  MathSciNet  MATH  Google Scholar 

  60. Kannan R, Wang ZJ (2009) A study of viscous flux formulations for a p-multigrid spectral volume Navier Stokes solver. J Sci Comput 41(2):165–199

    Article  MathSciNet  MATH  Google Scholar 

  61. Roe PL (1982) Fluctuations and signals—a framework for numerical evolution problems. In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic Press, San Diego, pp 219–257

    Google Scholar 

  62. Roe PL (1987) Linear advection schemes on triangular meshes. Cranfield Institute of Technology, Report 8720

  63. Roe PL (1994–1995) Multidimensional upwinding. Motivation and concepts. VKI lecture series

    Google Scholar 

  64. Deconinck H, Paillère H, Struijs R, Roe PL (1993) Multidimensional upwind schemes based on fluctuation-splitting for systems of conservation laws. Comput Mech 11:323–340

    Article  MATH  Google Scholar 

  65. Paillère H, Boxho J, Degrez G, Deconinck H (1996) Multidimensional upwind residual distribution schemes for the convection-diffusion equation. Int J Numer Methods Fluids 23:923–936

    Article  MATH  Google Scholar 

  66. Issman E, Degrez G, Deconinck H (1996) Implicit upwind residual-distribution Euler and Navier-Stokes solver on unstructured meshes. AIAA J 34(10):2021–2028

    Article  MATH  Google Scholar 

  67. Hubbard ME, Roe PL (2000) Compact high-resolution algorithms for time-dependent advection on unstructured grids. Int J Numer Methods Fluids 33(5):711–736

    Article  MathSciNet  MATH  Google Scholar 

  68. Deconinck H, Sermeus K, Abgrall R (2000) Status of multidimensional upwind residual distribution schemes and applications in aeronautics. AIAA paper 2000–2328

  69. Abgrall R (2001) Toward the ultimate conservative scheme: following the quest. J Comput Phys 167:277–315

    Article  MathSciNet  MATH  Google Scholar 

  70. Abgrall R, Roe PL (2003) Construction of very high order fluctuation schemes. J Sci Comput 19:3–36

    Article  MathSciNet  MATH  Google Scholar 

  71. Abgrall R, Mezine M (2003) Construction of second order accurate monotone and stable residual distribution schemes for unsteady flow problems. J Comput Phys 188:16–55

    Article  MathSciNet  MATH  Google Scholar 

  72. Abgrall R, Mezine M (2004) Construction of second order accurate monotone and stable residual distribution schemes for steady problems. J Comput Phys 195:474–507

    Article  MathSciNet  MATH  Google Scholar 

  73. Abgrall R, Barth TJ (2002) Weighted residual distribution schemes for conservation laws via adaptive quadrature. SIAM J Sci Comput 24:732–769

    Article  MathSciNet  MATH  Google Scholar 

  74. Abgrall R (2006) Essentially non-oscillatory residual distribution schemes for hyperbolic problems. J Comput Phys 214:773–808

    Article  MathSciNet  MATH  Google Scholar 

  75. Abgrall R, Roe PL (2003) High order fluctuation schemes on triangular meshes. J Sci Comput 19:3–36

    Article  MathSciNet  MATH  Google Scholar 

  76. Abgrall R, Adrianov N, Mezine M (2005) Towards very high-order accurate schemes for unsteady convection problems on unstructured meshes. Int J Numer Methods Fluids 47:679–691

    Article  MATH  Google Scholar 

  77. Ricchiuto M, Csìk Á, Deconinck H (2005) Residual distribution for general time dependent conservation laws. J Comput Phys 209:249–289 2005

    Article  MathSciNet  MATH  Google Scholar 

  78. De Palma P, Pascazio G, Rubino DT, Napolitano M (2006) Multidimensional upwind residual distribution schemes for the convection-diffusion equation. J Comput Phys 218:159–199

    Article  MathSciNet  MATH  Google Scholar 

  79. Abgrall R, Marpeau F (2007) Residual distribution schemes on quadrilateral meshes. J Sci Comput 30:131–175

    Article  MathSciNet  MATH  Google Scholar 

  80. Cueto-Felgueroso L, Colominas I, Fe J, Navarrina F, Casteleiro M (2006) High order finite volume schemes on unstructured grids using moving least squares reconstruction. Application to shallow waters dynamics. Int J Numer Methods Eng 65:295–331

    Article  MathSciNet  MATH  Google Scholar 

  81. Cueto-Felgueroso L, Colominas I, Nogueira X, Navarrina F, Casteleiro M (2007) Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 196:4712–4736

    Article  MathSciNet  MATH  Google Scholar 

  82. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  83. Liu WK, Li S, Belytschko T (1997) Moving least square reproducing kernel method part I: methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    Article  MathSciNet  MATH  Google Scholar 

  84. Liu WK, Hao W, Chen Y, Jun S, Gosz J (1997) Multiresolution reproducing kernel particle methods. Comput Mech 20:295–309

    Article  MathSciNet  MATH  Google Scholar 

  85. Nogueira X, Cueto-Felgueroso L, Colominas I, Gómez H, Navarrina F, Casteleiro M (2009) On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids. Int J Numer Methods Eng 78:1553–1584

    Article  MATH  Google Scholar 

  86. Cueto-Felgueroso L, Colominas I (2008) High-order finite volume methods and multiresolution reproducing kernels. Arch Comput Methods Eng 15(2):185–228

    Article  MathSciNet  MATH  Google Scholar 

  87. Nogueira X, Cueto-Felgueroso L, Colominas I, Navarrina F, Casteleiro M (2010) A new shock-capturing technique based on moving least squares for higher-order numerical schemes on unstructured grids. Comput Methods Appl Mech Eng 199(37–40):2544–2558

    Article  MathSciNet  Google Scholar 

  88. George WK (2005) Lectures in turbulence for the 21st century. Department of Thermo and Fluid Engineering, Chalmers University of Technology, Göteborg, Sweden

  89. Sagaut P (2005) Large eddy simulation for incompressible flows. An introduction, 3rd edn. Springer, Berlin

    Google Scholar 

  90. Garnier E, Adams N, Sagaut P (2009) Large-eddy simulation for compressible flows. Scientific computation series. Springer, Berlin

    Book  MATH  Google Scholar 

  91. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  92. Wilcox DC (1994) Turbulence modelling for CFD. DCW industries

  93. Richardson LF (1922) Weather prediction by numerical process. Cambridge University Press, Cambridge (republished by Dover in 1965)

    MATH  Google Scholar 

  94. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:301–305 (in Russian), translated to English in Kolmogorov AN (1991) in The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proceedings of the Royal Society of London, Series A: mathematical and physical sciences 434(1890):9–13

    Google Scholar 

  95. Davidson PA (2004) Turbulence. An introduction for scientist and engineers. Oxford University Press, London

    Google Scholar 

  96. Orszag SA, Patterson GS (1972) Numerical simulation of turbulence. In: Lecture notes in physics, vol 12. Springer, London, pp 127–147

    Google Scholar 

  97. Kolmogorov AN (1942) Equations of turbulent motion of an incompressible flow. Izv Akad Nauk Uzbekskoi SSR Ser Fiziko-Mat Nauk 6:56–58 (in Russian), A translation is found in Spalding, DB, Kolmogorov’s two-equation model of turbulence, Proc Math Physical Sci, 434(1890):211–216. Turbulence and stochastic process: Kolmogorov’s ideas 50 years on 1991

    Google Scholar 

  98. Launder BE, Sharma BI (1974) Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disc. Lett Heat Mass Transf 1:131–138

    Article  Google Scholar 

  99. Spalding DB (1991) Kolmogorov’s two-equation model of turbulence. Proc Math Phys Sci 434(1890):211–216. Turbulence and stochastic process: Kolmogorov’s ideas 50 years

    Article  MathSciNet  MATH  Google Scholar 

  100. Menter FR (1993) Zonal two equation kω turbulence models for aerodynamic flows. AIAA paper 93-2906

  101. Lien FS, Durbin PA (1996) Non-linear \(k-\epsilon-\overline{\nu^{2}}\) modeling with application to high-lift. CTR summer proceedings

  102. Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  103. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence. J Sci Comput 1(1):3–51

    Article  MathSciNet  MATH  Google Scholar 

  104. Liou WW (1991) Modeling of compressible turbulent shear flows. NASA technical report 19920014097

  105. Lele SK (1994) Compressibility effect on turbulence. Annu Rev Fluid Mech 26:211–254

    Article  MathSciNet  Google Scholar 

  106. Lele SK (1993) Notes on the effect of compressibility on turbulence. Center for turbulence research manuscripts, 145, Standford University

  107. Batchelor GK (1953) The theory of homogeneous turbulence. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  108. Kovasznay LSG (1953) Turbulence in supersonic flow. J Aeronaut Sci 20(10):657–682. Reprinted in the AIAA J Spec Suppl: Centennial of powered flight: a retrospective of aerospace research, GM Faeth, Library of flight series, vol 41, 2003

    MATH  Google Scholar 

  109. Pope SB (1975) A more general effective-viscosity hypothesis. J Fluid Mech 72:331–340

    Article  MATH  Google Scholar 

  110. Yoshizawa A (1984) Statistical analysis of the derivation of the Reynolds stress from its eddy-viscosity representation. Phys Fluids 27:1377–1387

    Article  MATH  Google Scholar 

  111. Rubinstein R, Barton JM (1990) Nonlinear Reynolds stress models and the renormalization group. Phys Fluids A 2:1472–1476

    Article  MATH  Google Scholar 

  112. Deardorff JW (1970) A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech 41(2):453–480

    Article  MATH  Google Scholar 

  113. Ferziger JH (1976) Large eddy numerical simulations of turbulent flows. AIAA paper 76-347. San Diego, CA

  114. Wagner GJ, Liu WK (2000) Turbulence simulation and multiple scale subgrid models. Comput Mech 25:117–136

    Article  MATH  Google Scholar 

  115. Haselbacher A, Vasilyev OV (2003) Commutative discrete filtering on unstructured grids based on least-squares techniques. J Comput Phys 187:197–211

    Article  MATH  Google Scholar 

  116. Marsden AL, Vasilyev OV, Moin P (2002) Construction of commutative filters for LES on unstructured meshes. J Comput Phys 175:584–602

    Article  MATH  Google Scholar 

  117. Stolz S (2005) High-pass filtered eddy-viscosity models for large-eddy simulations of compressible wall-bounded flows. J Fluids Eng 127:666–673

    Article  Google Scholar 

  118. Vreman AW (2003) The filtering analog of the variational multiscale method in large-eddy simulation. Phys Fluids 15(8):L61–L64

    Article  MathSciNet  Google Scholar 

  119. Vreman B, Geurts B, Kuerten H (1995) A priori tests of large Eddy simulation of the compressible plane mixing layer. J Eng Math 29(4):199–327

    Article  MathSciNet  Google Scholar 

  120. Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164

    Article  Google Scholar 

  121. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  MATH  Google Scholar 

  122. Moin P, Squires K, Cabot WH, Lee S (1991) A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys Fluids A 3(11):2746–2757

    Article  MATH  Google Scholar 

  123. Stolz S, Adams NA, Kleiser L (1999) Analysis of sub-grid scales and sub-grid scale modeling for shock-boundary-layer interaction. In: Banerjee S, Eaton J (eds) Turbulence and Shear Flow I. Begell House, New York, pp 881–886

    Google Scholar 

  124. Hughes TJR, Mazzei L, Jansen KE (2000) Large-eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59

    Article  MATH  Google Scholar 

  125. Hughes TJR, Mazzei L, Oberai AA, Wray AA (2001) The multiscale formulation of large-eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512

    Article  Google Scholar 

  126. Hughes TJR, Oberai AA, Mazzei L (2001) Large-eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13:1784–1799

    Article  Google Scholar 

  127. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization and stabilized methods. SIAM J Numer Anal 45:539–557

    Article  MathSciNet  MATH  Google Scholar 

  128. Collis SS (2001) Monitoring unresolved scales in multiscale turbulence modeling. Phys Fluids 13(6):1800–1806

    Article  Google Scholar 

  129. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201

    Article  MathSciNet  MATH  Google Scholar 

  130. Voke PR (1990) Multiple mesh simulation of turbulent flow. Technical report QMW EP-1082. Queen Mary and Westfield College, University of London, UK

  131. Terracol M, Sagaut P, Basdevan C (2001) A multilevel algorithm for large-eddy simulation of turbulent compressible flows. J Comput Phys 167(2):439–474

    Article  MATH  Google Scholar 

  132. Sagaut P, Labourasse E, Quémére P, Terracol M (2000) Multiscale approaches for unsteady simulation of turbulent flows. Int J Nonlinear Sci Numer Simul 1(4):285–298

    Article  MathSciNet  MATH  Google Scholar 

  133. Stolz S, Adams NA (1999) An approximate deconvolution procedure for large-eddy simulation. Phys Fluids 11:1699–1701

    Article  MATH  Google Scholar 

  134. Stolz S, Schlatter P, Meyer D, Kleiser L (2003) High-pass filtered eddy-viscosity models for LES. In: Friedrich VR, Geurts BJ, Métais O (eds) Direct and large-eddy simulation. Kluwer Academic, Dordrecht, pp 81–88

    Google Scholar 

  135. Mathew J (2003) An explicit filtering method for LES of compressible flows. Phys Fluids 15:2279–2289

    Article  MathSciNet  Google Scholar 

  136. Beaudan P, Moin P (1994) Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds numbers. Dept. of Mechanical Engineering, Rept. TF-62. Stanford University, Stanford, CA

  137. Mittal R, Moin P (1997) Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows. AIAA J 35(8):1415–1417

    Article  MATH  Google Scholar 

  138. Nogueira X, Cueto-Felgueroso L, Colominas Gómez H (2010) Implicit large eddy simulation of non-wall-bounded turbulent flows based on the multiscale properties of a high-order finite volume method. Comput Methods Appl Mech Eng 199:315–624

    Google Scholar 

  139. Boris JP, Grinstein FF, Oran ES, Kolbe RJ (1992) New insights into large eddy simulation. Fluid Dyn Res 10:199–228

    Article  Google Scholar 

  140. Oran ES, Boris JP (1993) Computing turbulent shear flows—a convenient conspiracy. Comput Phys 7:523–533

    Google Scholar 

  141. Porter DH, Pouquet A, Woodward PR (1994) Kolmogorv-like spectra in decaying three-dimensional supersonic flows. Phys Fluids 6:2133–2142

    Article  MATH  Google Scholar 

  142. Margolin LG, Smolarkiewicz PK, Sorbjan Z (1999) Large eddy simulations of convective boundary layers using nonoscillatory differencing. Physica D 133:390–397

    Article  MathSciNet  MATH  Google Scholar 

  143. Grinstein FF, Fureby C (2002) Recent progress on MILES for high Reynolds number flows. J Fluids Eng 124:848–861

    Article  Google Scholar 

  144. Margolin LG, Rider WJ (2002) A rationale for implicit turbulence modelling. Int J Numer Methods Fluids 39:821–841

    Article  MathSciNet  MATH  Google Scholar 

  145. Porter DH, Pouquet A, Woodward PR (1992) A numerical study of supersonic turbulence. Theor Comput Fluid Dyn 4:13–49

    Article  MATH  Google Scholar 

  146. Johnsen E et al. (2010) Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves. J Comput Phys 229(4):1213–1237

    Article  MathSciNet  MATH  Google Scholar 

  147. Maaloum A, Kouidri S, Rey R (2004) Aeroacoustic performances evaluation of axial fans based on the unsteady pressure field on the blades surface. Appl Acoust 65:367–384

    Article  Google Scholar 

  148. Moon Young J, Cho Y, Nam H-S (2003) Computation of unsteady viscous flow and aeroacoustic noise of cross flow fans. Comput Fluids 32:995–1015

    Article  MATH  Google Scholar 

  149. Khelladi S, Kouidri S, Bakir F, Rey R (2008) Predicting tonal noise from a high speed vaned centrifugal fan. J Sound Vib 313(1–2):113–133

    Article  Google Scholar 

  150. Farassat F, Myers MK (1988) Extension of Kirchhoff’s formula to radiation from moving surfaces. J Sound Vib 123:451–560

    Article  MathSciNet  Google Scholar 

  151. Colonius T, Lele SK (2004) Computational aeroacoustics: progress on nonlinear problems of sound generation. Prog Aerosp Sci 40:345–416

    Article  Google Scholar 

  152. Bogey C, Bailly C, Juvé D (2002) Computation of flow noise using source terms in linearized Euler’s equations. AIAA J 40(2):235–243

    Article  Google Scholar 

  153. Williams JE, Hawkings DL (1969) Sound generation by turbulence and surfaces in arbitrary motion. Phil Trans R Soc Lond A 264(1151):321–342, doi:10.1098/rsta.1969.0031

    Article  MATH  Google Scholar 

  154. Moon Young J, Seo Jung H (2006) Linearized perturbed compressible equations for low Mach number aeroacoustics. J Comput Phys 218(2):702–719

    Article  MathSciNet  MATH  Google Scholar 

  155. Lynam EJ, Webb HA (1919) The emission of sound by airscrews. R. & M., No 624

  156. Bryan GH (1920) The acoustics of moving sources with application to airscrews. R. & M., No 684, British A.R.C.

  157. Gutin L (1936) On the sound field of a rotating propeller NACA TM1195 (Traduction de Über das Schallfeld einer rotierenden Luftschraube. Phys Z Sowjetunion 9(1):57–71

    MathSciNet  Google Scholar 

  158. Lighthill MJ (1952) On sound generated aerodynamically, I. General theory. Proc R Soc Lond Ser A 211:564–587

    Article  MathSciNet  MATH  Google Scholar 

  159. Lighthill MJ (1954) On sound generated aerodynamically, II. Turbulence as a source of sound. Proc R Soc A 222(1148):1–32, doi:10.1098/rspa.1954.0049

    Article  MathSciNet  MATH  Google Scholar 

  160. Curle N (1955) The influence of solid boundaries upon aerodynamic sound. Proc R Soc Lond Ser A 231:505–514

    Article  MathSciNet  MATH  Google Scholar 

  161. Harten A, Lax P, Van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61

    Article  MathSciNet  MATH  Google Scholar 

  162. Jahawar P, Kamath H (2000) A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids. J Comput Phys 164:165–203

    Article  MathSciNet  Google Scholar 

  163. Barth TJ (1993) Recent developments in high order k-exact reconstruction on unstructured meshes. AIAA paper 93-0068

  164. Ollivier-Gooch CF, Nejat A, Michalak K (2007) On obtaining high-order finite volume solutions to the Euler equations on unstructured meshes. In: 18th AIAA computational fluid dynamics conference. AIAA, Washington

    Google Scholar 

  165. Dumbser M, Balsara DW, Toro EF, Munz CD (2008) A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J Comput Phys 227:8209–8253

    Article  MathSciNet  MATH  Google Scholar 

  166. Dumbser M (2010) Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier-Stokes equations. Comput Fluids 39(1):60–76

    Article  MathSciNet  Google Scholar 

  167. Nogueira X, Cueto-Felgueroso L, Colominas, Khelladi S. (2010) On the simulation of wave propagation with a higher-order finite volume scheme based on reproducing kernel methods. Comput Methods Appl Mech Eng 199:1471–1490

    Article  MathSciNet  Google Scholar 

  168. Khelladi S, Martin S, Nogueira X, Bakir F (2010) Higher-order preserving methods for unsteady finite volume solvers based on reproducing kernels: application to aeroacoustic problems. In: 16th AIAA/CEAS, Aeroacoustics conference, Stockholm, Sweden, AIAA paper 2010-3817

    Google Scholar 

  169. Venkatakrishnan V, Mavriplis D (1996) Implicit method for the computation of unsteady flows on unstructured grids. J Comput Phys 127:380–397

    Article  MATH  Google Scholar 

  170. Bailly C, Bogey C (2006) An overview of numerical methods for acoustic wave propagation. In: Wesseling P, Oñate E, Périaux J (eds) European conference on computational fluid dynamics, ECCOMAS CFD

    Google Scholar 

  171. Hardin JC, Ristorcelli JR, Tam CKW (1995) ICASE/LaRC workshop on benchmark problems in computational aeroacoustics. NASA conference publication, vol 3300

    Google Scholar 

  172. Viswanathan K, Sankar LN (1995) A comparative study of upwind and MacCormack schemes for CAA benchmark problems. In: ICASE/LaRC workshop on benchmark problems in computational aeroacoustics, pp 185–195

    Google Scholar 

  173. Tam CKW, Shen H (1993) Direct computation of nonlinear acoustic pulses using high order finite difference schemes. AIAA paper 93-4325

  174. Ducros F, Ferrand V, Nicoud F, Weber C, Darracq D, Gacherieu C, Poinsot T (1999) Large-eddy simulation of the shock/turbulence interaction. J Comput Phys 152:517–549

    Article  MATH  Google Scholar 

  175. Pirozzoli S (2002) Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys 178:81–117

    Article  MathSciNet  MATH  Google Scholar 

  176. Harten A (1978) The artificial compression method for computation of shocks and contact discontinuities. III. Self adjusting hybrid schemes. Math Comput 32:363–389

    MathSciNet  MATH  Google Scholar 

  177. Adams NA, Shariff K (1996) A high-resolution hybrid compact-ENO scheme for shock-turbulence interaction problems. J Comput Phys 127:27–51

    Article  MathSciNet  MATH  Google Scholar 

  178. Sjögreen B, Yee HC (2004) Multiresolution wavelet based adaptive numerical dissipation control for high order methods. J Sci Comput 20:211–255

    Article  MathSciNet  MATH  Google Scholar 

  179. Spyropoulos ET, Blaisdell GA (1996) Evaluation of the dynamic model for simulations of compressible decaying isotropic turbulence. AIAA J 34(5):990–998

    Article  MATH  Google Scholar 

  180. Sarkar S, Erlebacher G, Hussaini MY, Kreiss HO (1991) The analysis and modelling of dilatational terms in compressible turbulence. J Fluid Mech 227:473–493

    Article  MATH  Google Scholar 

  181. Bataille F (1994) Etude d’une turbulence faiblement compressible dans le cadre d’une modelisation Quasi-Normale avec Amortissement Tourbillonaire. Thèse Ecole Central de Lyon

  182. Hussaini MY (1998) On large-eddy simulation of compressible flows. AIAA 29th fluid dynamics conference, Albuquerque, New Mexico, Paper AIAA 98-2802

  183. Colonius T, Lele SK, Moin P (1993) Boundary conditions for direct computation of aerodynamic sound generation. AIAA J 31(9):1574–1582

    Article  MATH  Google Scholar 

  184. Hu FQ (1996) On absorbing boundary conditions for linearized Euler equations by a perfectly matched layer. J Comput Phys 129:201–219

    Article  MathSciNet  MATH  Google Scholar 

  185. Tam CKW, Webb JC (1993) Dispersion-relation-preserving finite difference schemes for computational aeroacoustics. J Comput Phys 107:262–281

    Article  MathSciNet  MATH  Google Scholar 

  186. Bernacki M, Lanteri S, Piperno S (2006) Time-domain parallel simulation of heterogeneous wave propagation on unstructured grids using explicit, non-diffusive, discontinuous Galerkin methods. J Comput Acoust 14(1):57–82

    Article  MathSciNet  MATH  Google Scholar 

  187. Nogueira X, Cueto-Felgueroso L, Colominas I, Khelladi S, Navarrina F, Casteleiro M (2010) Resolution of computational aeroacoustics problem on unstructured grids with high-order finite volume scheme. J Comput Appl Math 234(7):2089–2097

    Article  MathSciNet  MATH  Google Scholar 

  188. Bailly C, Juvé D (2000) Numerical solution of acoustic propagation problems using linearized Euler equations. AIAA J 38(1):22–29

    Article  Google Scholar 

  189. Khelladi S, Kouidri S, Bakir F, Rey R (2005) Flow study in the impeller-diffuser interface of a vaned centrifugal fan. ASME J Fluids Eng 127:495–502

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xesús Nogueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, X., Khelladi, S., Colominas, I. et al. High-Resolution Finite Volume Methods on Unstructured Grids for Turbulence and Aeroacoustics. Arch Computat Methods Eng 18, 315–340 (2011). https://doi.org/10.1007/s11831-011-9062-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-011-9062-9

Keywords

Navigation