Skip to main content
Log in

NURBS-Enhanced Finite Element Method (NEFEM)

A Seamless Bridge Between CAD and FEM

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The development of NURBS-Enhanced Finite Element Method (NEFEM) is revisited. This technique allows a seamless integration of the CAD boundary representation of the domain and the finite element method (FEM). The importance of the geometrical model in finite element simulations is addressed and the benefits and potential of NEFEM are discussed and compared with respect to other curved finite element techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abarbanel S, Gottlieb D (1998) On the construction of absorbing layers in CEM. Appl Numer Math 27(4):331–340

    MathSciNet  MATH  Google Scholar 

  2. Anderson JD (1982) Modern compressible flow: With historical perspective. McGraw-Hill, New York

    Google Scholar 

  3. Babuška I, Suri M (1987) The optimal convergence rate of the p-version of the finite element method. SIAM J Numer Anal 24(4):750–776

    MathSciNet  MATH  Google Scholar 

  4. Babuška I, Szabó BA, Katz IN (1981) The p-version of the finite element method. SIAM J Numer Anal 18(3):515–545

    MathSciNet  MATH  Google Scholar 

  5. Balanis CA (1989) Advanced engineering electromagnetics. Wiley, New York

    Google Scholar 

  6. Banerjee U, Suri M (1992) The effect of numerical quadrature in the p-version of the finite element method. Math Comput 59(199):1–20

    MathSciNet  MATH  Google Scholar 

  7. Barth T, Ohlberger M (2004) Finite volume methods: Foundation and analysis. In: Stein E, de Borst, R, Hughes TJR (eds) Fundamentals, encyclopedia of computational mechanics, vol 1. Wiley, New York. Chap 4

    Google Scholar 

  8. Barth TJ (1998) Simplified numerical methods for gas dynamics systems on triangulated domains. PhD thesis, Stanford University

  9. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138(2):251–285

    MathSciNet  MATH  Google Scholar 

  10. Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36(1):12–26

    MathSciNet  MATH  Google Scholar 

  11. Berenger JP (1994) A perfectly matched layer for the absorption of electromagnetic waves. J Comput Phys 114(2):185–200

    MathSciNet  MATH  Google Scholar 

  12. Bernardi C (1989) Optimal finite-element interpolation on curved domains. SIAM J Numer Anal 26(5):1212–1240

    MathSciNet  MATH  Google Scholar 

  13. Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, Berlin

    MATH  Google Scholar 

  14. Cavendish JC, Gordon WJ, Hall CA (1976) Ritz-Galerkin approximations in blending function spaces. Numer Math 26(2):155–178

    MathSciNet  MATH  Google Scholar 

  15. Chen Q, Babuška I (1995) Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle. Comput Methods Appl Mech Eng 128(3–4):405–417

    MATH  Google Scholar 

  16. Chen Q, Babuška I (1996) The optimal symmetrical points for polynomial interpolation of real functions in the tetrahedron. Comput Methods Appl Mech Eng 137(1):89–94

    MATH  Google Scholar 

  17. Ciarlet PG, Raviart PA (1972) Interpolation theory over curved elements with applications to finite element methods. Comput Methods Appl Mech Eng 1(1):217–249

    MathSciNet  MATH  Google Scholar 

  18. Cirak F, Ortiz M, Schröder J (2000) Subdivision surfaces: a new paradigm for thin-shell finite-element analysis. Int J Numer Methods Eng 47(12):2039–2072

    MATH  Google Scholar 

  19. Clough RW (2004) Early history of the finite element method from the view point of a pioneer. Int J Numer Methods Eng 60(1):283–287

    MATH  Google Scholar 

  20. Cockburn B (2004) Discontinuous Galerkin methods for computational fluid dynamics. In: Stein E, de Borst R, Hughes TJR (eds) Fluids. Encyclopedia of computational mechanics, vol 3. Wiley, New York. Chap 4

    Google Scholar 

  21. Cockburn B, Shu CW (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation-laws II. General framework. Math Comput 52(186):411–435

    MathSciNet  MATH  Google Scholar 

  22. Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. In: Cockburn B, Karniadakis GE, Shu CW (eds) Discontinuous Galerkin methods. Lecture notes in computational science and engineering, vol 11. Springer, Berlin, pp 3–50

    Google Scholar 

  23. Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. In: Cockburn B, Karniadakis GE, Shu CW (eds) Discontinuous Galerkin methods. Springer, Berlin

    Google Scholar 

  24. Costabel M, Dauge M (1997) Singularities of electromagnetic fields in polyhedral domains. Arch Ration Mech Anal 151(3):221–276

    MathSciNet  Google Scholar 

  25. Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: Toward integration of CAD and FEA. Wiley, New York

    Google Scholar 

  26. Coyle J, Ledger PD (2005) Evidence of exponential convergence in the computation of Maxwell eigenvalues. Comput Methods Appl Mech Eng 194(2–5):587–604

    MathSciNet  MATH  Google Scholar 

  27. Dadone A, Grossman B (1994) Surface boundary conditions for the numerical solution of the Euler equations. AIAA J 32(2):285–293

    MATH  Google Scholar 

  28. Davis P, Rabinowitz P (1984) Methods of numerical integration, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  29. Dey S, Shephard MS, Flaherty JE (1997) Geometry representation issues associated with p-version finite element computations. Comput Methods Appl Mech Eng 150(1–4):39–55

    MathSciNet  MATH  Google Scholar 

  30. Dominek AK, Shamanski HT (1990) The almond test body. The Ohio State University ElectroScience Laboratory, Department of Electrical Engineering, Report 721929-9, NASA Langley Research Center

  31. Donea J, Huerta A (2005) Finite element methods for flow problems. Wiley, New York

    Google Scholar 

  32. Dorr MR (1984) The approximation-theory for the p-version of the finite-element method. SIAM J Numer Anal 21(6):1180–1207

    MathSciNet  MATH  Google Scholar 

  33. Dubiner M (1991) Spectral methods on triangles and other domains. J Sci Comput 6:345–390

    MathSciNet  MATH  Google Scholar 

  34. Dumbser M, Munz CD (2007) On source terms and boundary conditions using high order arbitrary discontinuous Galerkin schemes. Int J Appl Math Comput Sci 17(3):297–310

    MathSciNet  MATH  Google Scholar 

  35. Ergatoudis J, Irons BM, Zienkiewicz OC (1968) Curved isoparametric “quadrilateral” elements for finite element analysis. Int J Solids Struct 4(1):31–42

    MATH  Google Scholar 

  36. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 192(12–14):1257–1275

    Google Scholar 

  37. Gao H, Wang ZJ, Liu Y (2010) A study of curved boundary representations for 2D high order Euler solvers. J Sci Comput 44(3):323–336

    MathSciNet  MATH  Google Scholar 

  38. Gordon WJ, Hall CA (1973) Construction of curvilinear co-ordinate systems and applications to mesh generation. Int J Numer Methods Eng 7(4):461–477

    MathSciNet  MATH  Google Scholar 

  39. Gordon WJ, Hall CA (1973) Transfinite element methods: Blending-function interpolation over arbitrary curved element domains. Numer Math 21(2):109–129

    MathSciNet  MATH  Google Scholar 

  40. Gottlieb S, Shu CW (1998) Total variation diminishing Runge-Kutta schemes. Math Comput 67(221):73–85

    MathSciNet  MATH  Google Scholar 

  41. Gui W, Babuška I: (1986) The h-version, p-version and h-p-version of the finite-element method in 1-dimension. 1 The error analysis of the p-version. Numer Math 49(6):577–612

    MathSciNet  MATH  Google Scholar 

  42. Hachemi ME, Hassan O, Morgan K, Rowse D, Weatherill N (2004) A low-order unstructured-mesh approach for computational electromagnetics in the time domain. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362(1816):445–469

    MathSciNet  MATH  Google Scholar 

  43. Harrington RF (1961) Time-harmonic electromagnetic fields. McGraw-Hill, New York

    Google Scholar 

  44. Harris R, Wang ZJ, Liu Y (2007) Efficient implementation of high-order spectral volume method for multidimensional conservation laws on unstructured grids. In: 45th AIAA aerospace sciences meeting and exhibit. AIAA, Nevada

    Google Scholar 

  45. Hesthaven JS (2000) Stable spectral methods on tetrahedral elements. SIAM J Numer Anal 21(6):2352–2380

    MathSciNet  MATH  Google Scholar 

  46. Hesthaven JS, Warburton T (2002) Nodal high-order methods on unstructured grids I. time-domain solution of Maxwell’s equations. J Comput Phys 181(1):186–221

    MathSciNet  MATH  Google Scholar 

  47. Hirsch C (1988) Numerical computation of internal and external flows. Fundamentals of numerical discretization, vol 1. Wiley, New York

    MATH  Google Scholar 

  48. Huerta A, Rodríguez-Ferran A, Díez P, Sarrate J (1999) Adaptive finite element strategies based on error assessment. Int J Numer Methods Eng 46:1803–1818

    MATH  Google Scholar 

  49. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39–41):4135–4195

    MathSciNet  MATH  Google Scholar 

  50. Huttunen T, Malinen M, Monk P (2007) Solving Maxwell’s equations using the ultra weak variational formulation. J Comput Phys 223(2):731–758

    MathSciNet  MATH  Google Scholar 

  51. Inoue K, Kikuchi Y, Masuyama T (2005) A NURBS finite element method for product shape design. J Eng Des 16(2):157–174

    Google Scholar 

  52. Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  53. Kagan P, Fischer A, Bar-Yoseph PZ (1998) New B-spline finite element approach for geometrical design and mechanical analysis. Int J Numer Methods Eng 41(3):435–458

    MATH  Google Scholar 

  54. Karniadakis GE, Sherwin SJ (1999) Spectral/hp element methods for CFD (Numerical mathematics and scientific computation). Oxford University Press, Oxford

    Google Scholar 

  55. Krivodonova L, Berger M (2006) High-order accurate implementation of solid wall boundary conditions in curved geometries. J Comput Phys 211(2):492–512

    MathSciNet  MATH  Google Scholar 

  56. Ladson CL, Brooks CW, Hill AS, Sproles DW (1996) Computer program to obtain ordinates for naca airfoils. Tech Rep NASA TM-4741. NASA Langley Research Center. http://techreports.larc.nasa.gov/ltrs/PDF/NASA-96-tm4741.pdf

  57. Landmann B, Kessler M, Wagner S, Krämer E (2008) A parallel high-order discontinuous Galerkin code for laminar and turbulent flows. Comput Fluids 37(4):427–438

    MathSciNet  Google Scholar 

  58. Laney CB (1998) Computational gasdynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  59. Ledger PD, Morgan K, Hassan O (2007) Electromagnetic scattering simulation using an H(curl) conforming hp finite element method in three dimensions. Int J Numer Methods Fluids 53(8):1267–1296

    MathSciNet  MATH  Google Scholar 

  60. Ledger PD, Morgan K, Hassan O, Weatherill NP (2003) Plane wave H(curl,Ω) conforming finite elements for Maxwell’s equations. Comput Mech 31(3–4):272–283

    MathSciNet  MATH  Google Scholar 

  61. Lenoir M (1986) Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J Numer Anal 23(3):562–580

    MathSciNet  MATH  Google Scholar 

  62. Luhon C, Wagner S (2007) Three-dimensional discontinuous Galerkin codes to simulate viscous flow by spatial discretization of high order and curved elements on unstructured grids. In: New results in numerical and experimental fluid mechanics VI. Springer, Berlin, pp 145–153

    Google Scholar 

  63. Luo H, Pozrikidis C (2006) A Lobatto interpolation grid in the tetrahedron. IMA J Appl Math 71(2):298–313

    MathSciNet  MATH  Google Scholar 

  64. Luo XJ, Shephard MS, Remacle JF (2001) Influence of geometric approximation on the accuracy of higher order methods. Tech Rep 1, SCOREC

  65. Lyness JN, Jespersen D (1975) Moderate degree symmetric quadrature rules for the triangle. IMA J Appl Math 15:19–32

    MathSciNet  MATH  Google Scholar 

  66. Ma YL, Hewitt WT (2003) Point inversion and projection for NURBS curve and surface: control polygon approach. Comput Aided Geom Des 20:79–99

    MathSciNet  MATH  Google Scholar 

  67. Mäkipelto J (2004) Geometry based rational enrichment functions for triangular plane elasticity element. In: Proceedings of the 21st international congress of theoretical and applied mechanics. Poland

    Google Scholar 

  68. McLeod R (1979) A piecewise parabolic \(\mathcal{C}^{1}\) approximation technique for curved boundaries. Comput Math Appl 5:277–284

    MATH  Google Scholar 

  69. Muñoz JJ (2008) Modelling unilateral frictionless contact using the null-space method and cubic B-spline interpolation. Comput Methods Appl Mech Eng 197(9–12):979–993

    MATH  Google Scholar 

  70. Nitsche JA (1971) Über ein variations zur lösung von dirichlet-problemen bei verwendung von teilräumen die keinen randbedingungen unterworfen sind. Abh Math Semin Univ Hamb 36:9–15

    MathSciNet  MATH  Google Scholar 

  71. Pascal JF, George PL (1999) Maillages : applications aux éléments finis. Hermès, Paris

    Google Scholar 

  72. Piegl L, Tiller W (1995) The NURBS book. Springer, London

    MATH  Google Scholar 

  73. Raviart PA, Thomas JM (1998) Introduction à l’analyse numérique des équations aux dérivées partielles. Dunod, Paris

    Google Scholar 

  74. Rogers DF (2001) An introduction to NURBS with historical perspective. Academic Press, San Diego

    Google Scholar 

  75. Schramm U, Pilkey W (1993) The coupling of geometric descriptions and finite elements using NURBS: a study of shape optimization. Finite Elem Anal Des 15(1):11–34

    MATH  Google Scholar 

  76. Schuh MJ, Woo AC, Simon MP (1994) The monostatic/bistatic approximation. IEEE Trans Antennas Propag Mag 35(4):76–78

    Google Scholar 

  77. Scott LR (1973) Finite element techniques for curved boundaries. PhD thesis, Massachusetts Institute of Technology, Dept of Mathematics

  78. Scott LR (1975) Interpolated boundary conditions in the finite element method. SIAM J Numer Anal 12(3):404–427

    MathSciNet  MATH  Google Scholar 

  79. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76(1):56–83

    MATH  Google Scholar 

  80. Sevilla R, Fernández-Méndez S (2011) Numerical integration over 2D NURBS shaped domains with applications to NURBS-enhanced FEM. Finite Elem Anal Des 47(10):1209–1220

    Google Scholar 

  81. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM) for Euler equations. Int J Numer Methods Fluids 57(9):1051–1069

    MATH  Google Scholar 

  82. Sevilla R, Fernández-Méndez S, Huerta A (2011) 3D-NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88(2):103–125

    Google Scholar 

  83. Sevilla R, Fernández-Méndez S, Huerta A (2011) Comparison of high-order curved finite elements. Int J Numer Methods Eng 87(8):719–734

    Google Scholar 

  84. Sherwin SJ, Karniadakis G (1995) A new triangular and tetrahedral basis for high-order (hp) finite element methods. Int J Numer Methods Eng 38(22):3775–3802

    MathSciNet  MATH  Google Scholar 

  85. Solin P, Segeth K (2003) Higher-order finite element methods. Chapman & Hall, London

    Google Scholar 

  86. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    MATH  Google Scholar 

  87. Szabó B, Düster A, Rank E (2004) The p-version of the finite element method. Encyclopedia of computational mechanics, vol 1 (Fundamentals). Wiley, New York. Chap 5

    Google Scholar 

  88. Szegö G (1975) Orthogonal polynomials, 4th edn. American Mathematical Society, Providence

    MATH  Google Scholar 

  89. Taflove A (1995) Computational electrodynamics: The finite-difference time-domain method. Artech House, Inc, Norwood

    MATH  Google Scholar 

  90. Taylor MA, Wingate BA, Vincent RE (2000) An algorithm for computing Fekete points in the triangle. SIAM J Numer Anal 38(5):1707–1720

    MathSciNet  MATH  Google Scholar 

  91. Toro EF (1997) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  92. Turkel E, Yefet A (1998) Absorbing PML boundary layers for wave-like equations. Appl Numer Math 27(4):533–557

    MathSciNet  MATH  Google Scholar 

  93. Van der Ven H, Van der Vegt JJW (2002) Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows II. Efficient flux quadrature. Comput Methods Appl Mech Eng 191(41–42):4747–4780

    MATH  Google Scholar 

  94. Wachspress EL (1973) A rational basis for function approximation. II Curved sides. J Inst Math Appl 11(1):83–104

    MathSciNet  MATH  Google Scholar 

  95. Wachspress EL (1975) A rational finite element basis, vol 114. Academic Press, New York

    MATH  Google Scholar 

  96. Wachspress EL (1981) High-order curved finite elements. Int J Numer Methods Eng 17(5):735–745

    MathSciNet  MATH  Google Scholar 

  97. Wandzura S, Xiao H (2003) Symmetric quadrature rules on a triangle. Comput Math Appl 45(12):1829–1840

    MathSciNet  MATH  Google Scholar 

  98. Wang ZJ, Liu Y (2006) Extension of the spectral volume method to high-order boundary representation. J Comput Phys 211(1):154–178

    MATH  Google Scholar 

  99. Wang ZJ, Sun Y (2002) A curvature-based wall boundary condition for the Euler equations on unstructured grids. In: Proceedings of the 40th AIAA aerospace sciences meeting and exhibit. AIAA, Nevada

    Google Scholar 

  100. Wang ZJ, Zhang L, Liu Y (2004) Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations. J Comput Phys 194(2):716–741

    MathSciNet  MATH  Google Scholar 

  101. Warburton T (2006) An explicit construction of interpolation nodes on the simplex. J Eng Math 56(3):247–262

    MathSciNet  MATH  Google Scholar 

  102. Woo AC, Wang HTG, Schub MJ (1993) Benchmark radar targets for the validation of computational electromagnetics programs. IEEE Trans Antennas Propag Mag 35(1):84–89

    Google Scholar 

  103. Xue D, Demkowicz L (2005) Control of geometry induced error in hp finite element (FE) simulations. I Evaluation of FE error for curvilinear geometries. Int J Numer Anal Model 2(3):283–300

    MathSciNet  MATH  Google Scholar 

  104. Zienkiewicz OC (1971) The finite element method in engineering science, 2nd edn. McGraw-Hill, London

    MATH  Google Scholar 

  105. Zienkiewicz OC (1995) Origins milestones and directions of the finite element method—A personal view. Arch Comput Methods Eng 2(1):1–48

    MathSciNet  Google Scholar 

  106. Zienkiewicz OC, Taylor RL (2000) The finite element method, vol 1. The basis, 5th edn. Butterwort-Heinemann, Stoneham

    MATH  Google Scholar 

  107. Zlámal M (1973) Curved elements in the finite element method. I. SIAM J Numer Anal 10(1):229–240

    MathSciNet  MATH  Google Scholar 

  108. Zlámal M (1973) The finite element method in domains with curved boundaries. Int J Numer Methods Eng 5(3):367–373

    MATH  Google Scholar 

  109. Zlámal M (1974) Curved elements in the finite element method. II. SIAM J Numer Anal 11(2):347–362

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Sevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevilla, R., Fernández-Méndez, S. & Huerta, A. NURBS-Enhanced Finite Element Method (NEFEM). Arch Computat Methods Eng 18, 441–484 (2011). https://doi.org/10.1007/s11831-011-9066-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-011-9066-5

Keywords

Navigation