Skip to main content
Log in

Partitioned Simulation of Fluid-Structure Interaction

Coupling Black-Box Solvers with Quasi-Newton Techniques

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this review article, the focus is on partitioned simulation techniques for strongly coupled fluid-structure interaction problems, especially on techniques which use at least one of the solvers as a black box. First, a number of analyses are reviewed to explain why Gauss–Seidel coupling iterations converge slowly or not at all for fluid-structure interaction problems with strong coupling. This provides the theoretical basis for the fast convergence of quasi-Newton and multi-level techniques. Second, several partitioned techniques that couple two black-box solvers are compared with respect to implementation and performance. Furthermore, performance comparisons between partitioned and monolithic techniques are examined. Subsequently, two similar techniques to couple a black-box solver with an accessible solver are analyzed. In addition, several other techniques for fluid-structure interaction simulations are studied and various methods to take into account deforming fluid domains are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8
Fig. 11
Algorithm 9
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Algorithm 10
Algorithm 11
Algorithm 12
Algorithm 13
Algorithm 14
Algorithm 15
Fig. 22
Algorithm 16

Similar content being viewed by others

References

  1. Amsallem D, Farhat C, Lieu T (2007) Aeroelastic analysis of F-16 and F-18/A configurations using adapted CFD-based reduced-order models. In: 48th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, Honolulu, HI, USA, pp 1–20. AIAA 2007-2364

    Google Scholar 

  2. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interaction by SPH. Comput Struct 85(11–14):879–890

    Article  Google Scholar 

  3. Artlich S, Mackens W (1995) Newton-coupling of fixed point iterations. In: Hackbusch W, Wittum G (eds) 11th GAMM-seminar: numerical treatment of coupled systems. Notes on numerical fluid mechanics, vol 51. Vieweg, Braunschweig, pp 1–10

    Chapter  Google Scholar 

  4. Badia S, Nobile F, Vergara C (2008) Fluid-structure partitioned procedures based on Robin transmission conditions. J Comput Phys 227(14):7027–7051

    Article  MathSciNet  MATH  Google Scholar 

  5. Balaban G, Logg A, Rognes M (2012) A Newton method for fluid-structure interaction using full Jacobians based on automatic form differentiation. In: 6th European Congress on computational methods in applied sciences and engineering, Vienna, Austria, pp 1–14

    Google Scholar 

  6. Bathe KJ (2007) Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput Struct 85(7–8):437–445

    Article  MathSciNet  Google Scholar 

  7. Bathe KJ, Ledezma G (2007) Benchmark problems for incompressible fluid flows with structural interactions. Comput Struct 85(11–14):628–644

    Article  Google Scholar 

  8. Bathe KJ, Zhang H (2004) Finite element developments for general fluid flows with structural interactions. Int J Numer Methods Eng 60(1):213–232

    Article  MATH  Google Scholar 

  9. Bathe KJ, Zhang H, Wang M (1995) Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions. Comput Struct 56(2–3):193–213

    Article  MATH  Google Scholar 

  10. Batina J (1990) Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J 28(8):1381–1388

    Article  Google Scholar 

  11. Bazilevs Y, Calo V, Zhang Y, Hughes T (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38(4–5):310–322

    Article  MathSciNet  MATH  Google Scholar 

  12. Bazilevs Y, Calo V, Hughes T, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43(1):3–37

    Article  MathSciNet  MATH  Google Scholar 

  13. Bazilevs Y, Hsu MC, Kiedl J, Wüchner R, Bletzinger KU (2011) 3D simulation of wind turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236–253

    Article  MATH  Google Scholar 

  14. Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174(3–4):261–274

    Article  MATH  Google Scholar 

  15. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5):601–620

    Article  MathSciNet  MATH  Google Scholar 

  16. Billah K, Scanlan R (1991) Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks. Am J Phys 59(2):118–124

    Article  Google Scholar 

  17. Blom F (1998) A monolithical fluid-structure interaction algorithm applied to the piston problem. Comput Methods Appl Mech Eng 167(3–4):369–391

    Article  MathSciNet  MATH  Google Scholar 

  18. de Boer A, van der Schoot M, Bijl H (2007) Mesh deformation based on radial basis function interpolation. Comput Struct 85(11–14):784–795

    Article  Google Scholar 

  19. de Boer A, van Zuijlen A, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Appl Mech Eng 196(8):1515–1525

    Article  MATH  Google Scholar 

  20. Brandt A (1977) Multilevel adaptive solutions to boundary-value problems. Math Comput 31(138):333–390

    Article  MATH  Google Scholar 

  21. Brezinski C (1975) Généralisations de la transformation de Shanks, de la table de Padé et de l’ϵ-algorithme. Calcolo 12(4):317–360

    Article  MathSciNet  Google Scholar 

  22. Broyden C (1965) A class of methods for solving nonlinear simultaneous equations. Math Comput 19(92):577–593

    Article  MathSciNet  MATH  Google Scholar 

  23. Broyden C (1970) The convergence of a class of double-rank minimization algorithms. Part I. IMA J Appl Math 6(1):76–90

    Article  MathSciNet  MATH  Google Scholar 

  24. Broyden C (1970) The convergence of a class of double-rank minimization algorithms. Part II. IMA J Appl Math 6(3):222–231

    Article  MathSciNet  MATH  Google Scholar 

  25. van Brummelen E (2009) Added mass effects of compressible and incompressible flows in fluid-structure interaction. J Appl Mech 76(2):021206

    Article  Google Scholar 

  26. van Brummelen E (2011) Partitioned iterative solution methods for fluid-structure interaction. Int J Numer Methods Fluids 65(1–3):3–27

    Article  MATH  Google Scholar 

  27. van Brummelen E, Michler C, de Borst R (2005) Interface-GMRES(R) acceleration of subiteration for fluid-structure-interaction problems. Report DACS-05-001. Available from: http://www.em.lr.tudelft.nl/downloads/DACS-05-001.pdf

  28. van Brummelen E, van der Zee K, de Borst R (2008) Space/time multigrid for a fluid-structure-interaction problem. Appl Numer Math 58(12):1951–1971

    Article  MathSciNet  MATH  Google Scholar 

  29. Burman E, Fernandez M (2007) Stabilized explicit coupling for fluid–structure interaction using Nitsche’s method. C R Math 345(8):467–472

    Article  MathSciNet  MATH  Google Scholar 

  30. Burman E, Fernandez M (2009) Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility. Comput Methods Appl Mech Eng 198(5–8):766–784

    Article  MathSciNet  MATH  Google Scholar 

  31. Cabay S, Jackson L (1976) A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J Numer Anal 13(5):734–752

    Article  MathSciNet  MATH  Google Scholar 

  32. Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the design of partitioned algorithms for fluid-structure problems. Comput Methods Appl Mech Eng 194(42–44):4506–4527

    Article  MathSciNet  MATH  Google Scholar 

  33. Cebral J, Löhner R (1997) Conservative load projection and tracking for fluid-structure problems. AIAA J 35(4):687–692

    Article  MATH  Google Scholar 

  34. Cebral J, Löhner R, Soto O, Choyke P, Yim P (2001) Patient-specific simulation of carotid artery stenting using computational fluid dynamics. In: 4th international conference on medical image computing and computer-assisted intervention. Lecture notes in computer science, vol 2208. Springer, London, pp 153–160

    Google Scholar 

  35. Chan T (1985) An approximate Newton method for coupled nonlinear systems. SIAM J Numer Anal 22(5):904–913

    Article  MathSciNet  MATH  Google Scholar 

  36. Chorin A (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2(1):12–26

    Article  MATH  Google Scholar 

  37. Chorin A (1968) Numerical solution of Navier–Stokes equations. Math Comput 22(104):745–762

    Article  MathSciNet  MATH  Google Scholar 

  38. Davidon W (1959) Variable metric methods for minimization. AEC Research and Development Report ANL-5990

  39. Davidon W (1968) Variance algorithms for minimization. Comput J 10(4):406–410

    Article  MathSciNet  MATH  Google Scholar 

  40. Degand C, Farhat C (2002) A three-dimensional torsional spring analogy method for unstructured dynamic meshes. Comput Struct 80(3–4):305–316

    Article  Google Scholar 

  41. Degroote J (2011) On the similarity between Dirichlet–Neumann with interface artificial compressibility and Robin–Neumann schemes for the solution of fluid-structure interaction problems. J Comput Phys 230(17):6399–6403

    Article  MathSciNet  MATH  Google Scholar 

  42. Degroote J, Bruggeman P, Haelterman R, Vierendeels J (2008) Stability of a coupling technique for partitioned solvers in FSI applications. Comput Struct 86(23–24):2224–2234

    Article  Google Scholar 

  43. Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct 87(11–12):793–801

    Article  Google Scholar 

  44. Degroote J, Annerel S, Vierendeels J (2010) Stability analysis of Gauss–Seidel iterations in a partitioned simulation of fluid-structure interaction. Comput Struct 88(5–6):263–271

    Article  Google Scholar 

  45. Degroote J, Haelterman R, Annerel S, Bruggeman P, Vierendeels J (2010) Performance of partitioned procedures in fluid-structure interaction. Comput Struct 88(7–8):446–457

    Article  Google Scholar 

  46. Degroote J, Swillens A, Bruggeman P, Haelterman R, Segers P, Vierendeels J (2010) Simulation of fluid-structure interaction with the interface artificial compressibility method. Commun Numer Methods Eng 26(3):276–289

    MathSciNet  MATH  Google Scholar 

  47. Degroote J, Annerel S, Vierendeels J (2011) Multi-solver algorithms for the partitioned simulation of fluid-structure interaction. Comput Methods Appl Mech Eng 200(25–28):2195–2210

    Article  MATH  Google Scholar 

  48. Degroote J, Annerel S, Vierendeels J (2012) Multi-level algorithms for the partitioned simulation of fluid-structure interaction. Comput Methods Appl Mech Eng 225–228:14–27

    Article  Google Scholar 

  49. Degroote J, Hojjat M, Stavropoulou E, Wüchner R, Bletzinger KU (2013) Partitioned solution of an unsteady adjoint for strongly coupled fluid-structure interactions and application to parameter identification of a one-dimensional problem. Struct Multidiscip Optim 47(1):77–94

    Article  MathSciNet  Google Scholar 

  50. Demirdzic I, Peric M (1988) Space conservation law in finite volume calculations of fluid flow. Int J Numer Methods Fluids 8(9):1037–1050

    Article  MathSciNet  MATH  Google Scholar 

  51. Dennis J, Schnabel R (1983) Numerical methods for unconstrained optimization and nonlinear equations, 6th edn. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  52. Deparis S, Fernandez M, Formaggia L (2003) Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions. Modél Math Anal Numér 37(4):601–616

    Article  MathSciNet  MATH  Google Scholar 

  53. Dettmer W, Perić D (2006) A computational framework for fluid-structure interaction: finite element formulation and applications. Comput Methods Appl Mech Eng 195(41–43):5754–5779

    Article  MATH  Google Scholar 

  54. Donea J, Guiliani S, Halleux J (1982) An arbitrary Lagrangian–Eulerian finite-element method for transient dynamic fluid structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723

    Article  MATH  Google Scholar 

  55. Donea J, Huerta A, Ponthot JP, Rodriguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. In: Encyclopedia of computational mechanics: fundamentals, vol 1. Wiley, New York, pp 1–25. Chap 14

    Google Scholar 

  56. Dumont K, Vierendeels J, Segers P, Van Nooten G, Verdonck P (2005) Predicting ATS open pivot (TM) heart valve performance with computational fluid dynamics. J Heart Valve Dis 14(3):393–399

    Google Scholar 

  57. Dumont K, Vierendeels J, Kaminsky R, Van Nooten G, Verdonck P, Bluestein D (2007) Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng 129(4):558–565

    Article  Google Scholar 

  58. Eddy R (1979) Extrapolation to the limit of a vector sequence. In: Wang P (ed) Information linkage between applied mathematics and industry. Academic Press, New York, pp 387–396

    Google Scholar 

  59. Edelsbrunner H, Mücke E (1994) Three-dimensional alpha shapes. ACM Trans Graph 13(1):43–72

    Article  MATH  Google Scholar 

  60. Eisenstat S, Elman H, Schultz M (1983) Variational iterative methods for nonsymmetric systems of linear equations. SIAM J Numer Anal 20(2):345–357

    Article  MathSciNet  MATH  Google Scholar 

  61. Fadlun E, Verzicco R, Orlandi P, Mohd-Yusof J (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys 161(1):35–60

    Article  MathSciNet  MATH  Google Scholar 

  62. Farhat C, Degand C, Koobus B, Lesoinne M (1998) Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput Methods Appl Mech Eng 163(1–4):231–245

    Article  MATH  Google Scholar 

  63. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1–2):95–114

    Article  MATH  Google Scholar 

  64. Farhat C, van der Zee K, Geuzaine P (2006) Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity. Comput Methods Appl Mech Eng 195(17–18):1973–2001

    Article  MATH  Google Scholar 

  65. Felippa C, Park K, Farhat C (2001) Partitioned analysis of coupled mechanical systems. Comput Methods Appl Mech Eng 190(24–25):3247–3270

    Article  MATH  Google Scholar 

  66. Fernandez M (2011) Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit. Bol Soc Esp Mat Apl 55:59–108

    MATH  Google Scholar 

  67. Fernandez M (2011) Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. C R Math 349(7–8):473–477

    Article  MATH  Google Scholar 

  68. Fernandez M, Le Tallec P (2003) Linear stability analysis in fluid-structure interaction with transpiration. Part II: Numerical analysis and applications. Comput Methods Appl Mech Eng 192(43):4837–4873

    Article  MATH  Google Scholar 

  69. Fernandez M, Moubachir M (2005) A Newton method using exact Jacobians for solving fluid-structure coupling. Comput Struct 83(2–3):127–142

    Article  Google Scholar 

  70. Fernandez M, Mullaert J (2011) Displacement-velocity correction schemes for incompressible fluid-structure interaction. C R Math 349(17–18):1011–1015

    Article  MathSciNet  MATH  Google Scholar 

  71. Fernandez M, Gerbeau JF, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int J Numer Methods Eng 69(4):794–821

    Article  MathSciNet  MATH  Google Scholar 

  72. Figueroa C, Vignon-Clementel I, Jansen K, Hughes T, Taylor C (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41–43):5685–5706

    Article  MathSciNet  MATH  Google Scholar 

  73. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

    Article  MathSciNet  MATH  Google Scholar 

  74. Fletcher R, Powell M (1963) A rapidly convergent descent method for minimization. Comput J 6(2):163–168

    Article  MathSciNet  MATH  Google Scholar 

  75. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191(6–7):561–582

    Article  MathSciNet  MATH  Google Scholar 

  76. Förster C, Wall W, Ramm E (2006) On the geometric conservation law in transient flow calculations on deforming domains. Int J Numer Methods Fluids 50(12):1369–1379

    Article  MATH  Google Scholar 

  77. Förster C, Wall W, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196(7):1278–1293

    Article  MATH  Google Scholar 

  78. Gallinger T, Bletzinger KU (2010) Comparison of algorithms for strongly coupled partitioned fluid-structure interaction—efficiency versus simplicity. In: Pereira J, Sequeira A (eds) 5th European conference on computational fluid dynamics, Lisbon, Portugal, pp 1–20

    Google Scholar 

  79. Gee M, Küttler U, Wall W (2011) Truly monolithic algebraic multigrid for fluid-structure interaction. Int J Numer Methods Eng 85(8):987–1016

    Article  MATH  Google Scholar 

  80. Gerardo-Giorda L, Nobile F, Vergara C (2010) Analysis and optimization of Robin–Robin partitioned procedures in fluid-structure interaction problems. SIAM J Numer Anal 48(6):2091–2116

    Article  MathSciNet  MATH  Google Scholar 

  81. Gerbeau JF, Vidrascu M (2003) A quasi-Newton algorithm based on a reduced model for fluid-structure interaction problems in blood flows. Modél Math Anal Numér 37(4):631–648

    Article  MathSciNet  MATH  Google Scholar 

  82. Gerbeau JF, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83(2–3):155–165

    Article  Google Scholar 

  83. Gerstenberger A, Wall W (2008) An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction. Comput Methods Appl Mech Eng 197(19–20):1699–1714

    Article  MathSciNet  MATH  Google Scholar 

  84. Gilmanov A, Sotiropoulos F (2005) A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 207(2):457–492

    Article  MATH  Google Scholar 

  85. Glowinski R, Pan TW, Périaux J (1994) A fictitious domain method for Dirichlet problem and applications. Comput Methods Appl Mech Eng 111(3–4):283–303

    Article  MATH  Google Scholar 

  86. Glowinski R, Pan TW, Hesla T, Joseph D, Périaux J (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25(5):755–794

    Article  MATH  Google Scholar 

  87. Goldfarb D (1970) A family of variable metric methods derived by variational means. Math Comput 24(109):23–26

    Article  MathSciNet  MATH  Google Scholar 

  88. Golub G, Van Loan C (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  89. Greenstadt J (1970) Variations on variable-metric methods. Math Comput 24(109):1–22

    MathSciNet  MATH  Google Scholar 

  90. Guidoboni G, Glowinski R, Cavallini N, Canic S, Lapin S (2009) A kinematically coupled time-splitting scheme for fluid–structure interaction in blood flow. Appl Math Lett 22(5):684–688

    Article  MathSciNet  MATH  Google Scholar 

  91. Haelterman R (2009) Analytical study of the least squares quasi-Newton method for interaction problems. PhD Thesis, Ghent University

  92. Heil M (2004) An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems. Comput Methods Appl Mech Eng 193(1–2):1–23

    Article  MathSciNet  MATH  Google Scholar 

  93. Helenbrook B (2003) Mesh deformation using the biharmonic operator. Int J Numer Methods Eng 56(7):1007–1021

    Article  MATH  Google Scholar 

  94. Hillewaere J, Dooms D, Van Quekelberghe B, Degroote J, Vierendeels J, De Roeck G, Degrande G (2012) Unsteady Reynolds averaged Navier–Stokes simulation of the post-critical flow around a closely spaced group of silos. J Fluids Struct 30:51–72

    Article  Google Scholar 

  95. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377

    MathSciNet  Google Scholar 

  96. Hron J, Turek S (2006) A monolithic FEM solver for an ALE formulation of fluid-structure interaction with configuration for numerical benchmarking. In: Wesseling P, Oñate E, Périaux J (eds) 4th European conference on computational fluid dynamics. Egmond aan Zee, Bergen

    Google Scholar 

  97. Hron J, Turek S (2006) A monolithic FEM/multigrid solver for ALE formulation of fluid structure interaction with application in biomechanics. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction—modelling, simulation, optimisation. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 146–170

    Chapter  Google Scholar 

  98. Hübner B, Walhorn E, Dinkler D (2004) A monolithic approach to fluid-structure interaction using space-time finite elements. Comput Methods Appl Mech Eng 193(23–26):2087–2104

    Article  MATH  Google Scholar 

  99. Idelsohn S, Calvo N, Oñate E (2003) Polyhedrization of an arbitrary 3D point set. Comput Methods Appl Mech Eng 192(22–24):2649–2667

    Article  MATH  Google Scholar 

  100. Idelsohn S, Oñate E, Del Pin F (2003) A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput Struct 81(8–11):655–671

    Article  Google Scholar 

  101. Idelsohn S, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197(19–20):1762–1776

    Article  MATH  Google Scholar 

  102. Idelsohn S, Marti J, Souto-Iglesias A, Oñate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43(1):125–132

    Article  MATH  Google Scholar 

  103. Irons B, Tuck R (1969) A version of the Aitken accelerator for computer iteration. Int J Numer Methods Eng 1(3):275–277

    Article  MATH  Google Scholar 

  104. Jahromi H, Izzuddin B, Zdravkovic L (2009) A domain decomposition approach for coupled modelling of nonlinear soil-structure interaction. Comput Methods Appl Mech Eng 198(33–36):2738–2749

    Article  MATH  Google Scholar 

  105. Keller H (1977) Numerical solution of bifurcation and nonlinear eigenvalue problems. In: Rabinowitz P (ed) Applications of bifurcation theory. Academic Press, San Diego, pp 359–384

    Google Scholar 

  106. Khan M, Moatamedi M, Souli M, Zeguer T (2008) Multiphysics out of position airbag simulation. Int J Crashworthiness 13(2):159–166

    Article  MATH  Google Scholar 

  107. Knoll D, Keyes D (2004) Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J Comput Phys 193(2):357–397

    Article  MathSciNet  MATH  Google Scholar 

  108. Küttler U, Wall W (2008) Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech 43(1):61–72

    Article  MATH  Google Scholar 

  109. Küttler U, Wall W (2009) Vector extrapolation for strong coupling fluid-structure interaction solvers. J Appl Mech 76(2):021205

    Article  Google Scholar 

  110. Küttler U, Förster C, Wall W (2006) A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains. Comput Mech 38(4–5):417–429

    Article  MATH  Google Scholar 

  111. Küttler U, Gee M, Förster C, Comerford A, Wall W (2010) Coupling strategies for biomedical fluid-structure interaction problems. Int J Numer Methods Biomed Eng 26(3–4):305–321

    Article  MathSciNet  MATH  Google Scholar 

  112. Lanzkron P, Rose D, Wilkes J (1996) An analysis of approximate nonlinear elimination. SIAM J Sci Comput 17(2):538–559

    Article  MathSciNet  MATH  Google Scholar 

  113. Lee C, Noguchi H, Koshizuka S (2007) Fluid-shell structure interaction analysis by coupled particle and finite element method. Comput Struct 85(11–14):688–697

    Article  Google Scholar 

  114. Lee J, LeVeque R (2003) An immersed interface method for incompressible Navier–Stokes equations. SIAM J Sci Comput 25(3):832–856

    Article  MathSciNet  MATH  Google Scholar 

  115. Lesoinne M, Farhat C (1996) Geometric conservation laws for flow problems with moving boundaries and deformable meshes and their impact on aeroelastic computations. Comput Methods Appl Mech Eng 134(1–2):71–90

    Article  MATH  Google Scholar 

  116. Lesoinne M, Farhat C (1998) A higher-order subiteration free staggered algorithm for non-linear transient aeroelastic problems. AIAA J 36(9):1754–1756

    Article  Google Scholar 

  117. Löhner R, Yang C (1996) Improved ALE mesh velocities for moving boundaries. Commun Numer Methods Eng 12(10):599–608

    Article  MATH  Google Scholar 

  118. van Loon R, Anderson P, de Hart J, Baaijens F (2004) A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves. Int J Numer Methods Fluids 46(5):533–544

    Article  MATH  Google Scholar 

  119. van Loon R, Anderson P, van de Vosse F (2006) A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2):806–823

    Article  MathSciNet  MATH  Google Scholar 

  120. Lynch D (1982) Unified approach to simulation of deforming elements with applications to phase-change problems. J Comput Phys 47(3):387–411

    Article  MathSciNet  MATH  Google Scholar 

  121. Mackens W, Menck J, Voss H (1999) Coupling iterative subsystem solvers. In: Keil F, Mackens W, Voss H, Werther J (eds) Scientific computing in chemical engineering II. Simulation, image processing, optimization, and control. Springer, Berlin, pp 184–191

    Google Scholar 

  122. Maman N, Farhat C (1995) Matching fluid and structure meshes for aeroelastic computations: a parallel approach. Comput Struct 54(4):779–785

    Article  Google Scholar 

  123. Manno V, Reitsma S (1993) Developing numerical techniques for solving low Mach number fluid-acoustic problems. AIAA J 31(11):1984–1991

    Article  MATH  Google Scholar 

  124. Marshall J, Imregun M (1996) A review of aeroelasticity methods with emphasis on turbomachinery applications. J Fluids Struct 10(3):237–267

    Article  Google Scholar 

  125. Martinez J (1984) A quasi-Newton method with modification of one column per iteration. Computing 33(3–4):353–362

    Article  MathSciNet  MATH  Google Scholar 

  126. Martinez J, Zambaldi M (1992) An inverse column-updating method for solving large-scale nonlinear systems of equations. Optim Methods Softw 1(2):129–140

    Article  Google Scholar 

  127. Matthies H, Steindorf J (2002) Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction. Comput Struct 80(27–30):1991–1999

    Article  Google Scholar 

  128. Matthies H, Steindorf J (2003) Partitioned strong coupling algorithms for fluid-structure interaction. Comput Struct 81(8–11):805–812

    Article  Google Scholar 

  129. Matthies H, Niekamp R, Steindorf J (2006) Algorithms for strong coupling procedures. Comput Methods Appl Mech Eng 195(17–18):2028–2049

    Article  MathSciNet  MATH  Google Scholar 

  130. McCormick G, Pearson J (1969) Variable metric methods and unconstrained optimization. In: Fletcher R (ed) Optimization. Academic Press, London, pp 307–325

    Google Scholar 

  131. Menck J (2002) An approximate Newton-like coupling of subsystems. J Appl Math Mech 82(2):101–114

    MathSciNet  MATH  Google Scholar 

  132. Merkle C, Athavale M (1987) Time-accurate unsteady incompressible flow algorithm based on artificial compressibility. In: 8th AIAA computational fluid dynamics conference, Honolulu, HI, USA, pp 397–407. AIAA 1987-1137

    Google Scholar 

  133. Mešina M (1977) Convergence acceleration for the iterative solution of the equations x=ax+f. Comput Methods Appl Mech Eng 10(2):165–173

    Article  MATH  Google Scholar 

  134. Michler C, van Brummelen E, Hulshoff S, de Borst R (2003) The relevance of conservation for stability and accuracy of numerical methods for fluid-structure interaction. Comput Methods Appl Mech Eng 192(37–38):4195–4215

    Article  MATH  Google Scholar 

  135. Michler C, van Brummelen E, de Borst R (2005) An interface Newton–Krylov solver for fluid-structure interaction. Int J Numer Methods Fluids 47(10–11):1189–1195

    Article  MATH  Google Scholar 

  136. Michler C, van Brummelen E, de Borst R (2006) Error-amplification analysis of subiteration-preconditioned GMRES for fluid-structure interaction. Comput Methods Appl Mech Eng 195(17–18):2124–2148

    Article  MATH  Google Scholar 

  137. Mittal R, Iaccarino G (2005) Immersed boundary methods. Annu Rev Fluid Mech 37:239–261

    Article  MathSciNet  Google Scholar 

  138. Mok D, Wall W (2001) Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures. In: Schweizerhof K, Wall W, Bletzinger KU (eds) Trends in computational structural mechanics, Barcelona

    Google Scholar 

  139. Mok D, Wall W, Ramm E (2001) Accelerated iterative substructuring schemes for instationary fluid-structure interaction. In: Bathe KJ (ed) Computational fluid and solid mechanics. Elsevier, Amsterdam, pp 1325–1328

    Chapter  Google Scholar 

  140. Monaghan J (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  141. Newmark N (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94

    Google Scholar 

  142. Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30(2):731–763

    Article  MathSciNet  MATH  Google Scholar 

  143. Nocedal J, Wright S (1999) Numerical optimization. Springer series in operations. Springer, Berlin

    Book  MATH  Google Scholar 

  144. Oñate E, Idelsohn S, Del Pin F, Aubry R (2004) The particle finite element method. An overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  145. Oñate E, Idelsohn S, Celigueta M, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800

    Article  MATH  Google Scholar 

  146. Pearson J (1969) Variable metric methods of minimization. Comput J 12(2):171–178

    Article  MathSciNet  MATH  Google Scholar 

  147. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28(7):845–856

    Article  Google Scholar 

  148. Peseux B, Gornet L, Donguy B (2005) Hydrodynamic impact: numerical and experimental investigations. J Fluids Struct 21(3):277–303

    Article  Google Scholar 

  149. Peskin C (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271

    Article  MATH  Google Scholar 

  150. Peskin C (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252

    Article  MathSciNet  MATH  Google Scholar 

  151. Peskin C (2002) The immersed boundary method. Acta Numer 11:479–517

    Article  MathSciNet  MATH  Google Scholar 

  152. Peyret R (1976) Unsteady evolution of a horizontal jet in a stratified fluid. J Fluid Mech 78(1):49–63

    Article  MATH  Google Scholar 

  153. Piperno S, Farhat C (2001) Partitioned procedures for the transient solution of coupled aeroelastic problems. Part II: Energy transfer analysis and three-dimensional applications. Comput Methods Appl Mech Eng 190(24–25):3147–3170

    Article  MATH  Google Scholar 

  154. Piperno S, Farhat C, Larrouturou B (1995) Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory and two-dimensional application. Comput Methods Appl Mech Eng 124(1–2):79–112

    Article  MathSciNet  MATH  Google Scholar 

  155. Potapov S, Maurel B, Combescure A, Fabis J (2009) Modeling accidental-type fluid-structure interaction problems with the SPH method. Comput Struct 87(11–12):721–734

    Article  Google Scholar 

  156. Powell M (1970) A new algorithm for unconstrained optimization. In: Roosen J, Mangasarian O, Ritter K (eds) Nonlinear programming. Academic Press, London, pp 31–65

    Google Scholar 

  157. Pugachev B (1977) Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations. USSR Comput Math Math Phys 17(5):199–207

    Article  Google Scholar 

  158. Quarteroni A (2006) Cardiovascular mathematics. In: Sanz-Solé M, Soria J, Varona J, Verdera J (eds) International Congress of mathematicians, vol 1. Eur. Math. Soc., Madrid, pp 479–512

    Google Scholar 

  159. Quarteroni A, Tuveri M, Veneziani A (2000) Computational vascular fluid dynamics: problems, models and methods. Comput Vis Sci 2(4):163–197

    Article  MATH  Google Scholar 

  160. Quirk J (1994) An alternative to unstructured grids for computing gas-dynamic flows around arbitrarily complex 2-dimensional bodies. Comput Fluids 23(1):125–142

    Article  MATH  Google Scholar 

  161. Richter T (2012) Goal-oriented error estimation for fluid-structure interaction problems. Comput Methods Appl Mech Eng 223–224:28–42

    Article  Google Scholar 

  162. Riemslagh K, Vierendeels J, Dick E (1998) Coupling of a Navier–Stokes solver and an elastic boundary solver for unsteady problems. In: Papailiou K, Tsahalis D, Périaux J, Hirsch C, Pandolfi M (eds) 2nd European computational fluid dynamics conference. Wiley, Athens, pp 1040–1045

    Google Scholar 

  163. Riemslagh K, Vierendeels J, Dick E (2000) An efficient coupling procedure for flexible wall fluid-structure interaction. In: 3th European Congress on computational methods in applied sciences and engineering, Barcelona, Spain, p 13

    Google Scholar 

  164. Råback P, Ruokolainen J, Lyly M, Järvinen E (2001) Fluid-structure interaction boundary conditions by artificial compressibility. In: 3rd European conference on computational fluid dynamics, Swansea, Wales, UK

    Google Scholar 

  165. Rugonyi S, Bathe KJ (2001) On the finite element analysis of fluid flows fully coupled with structural interactions. Comput Model Eng Sci 2(2):195–212

    Google Scholar 

  166. Saad Y (1981) Krylov subspace methods for solving large unsymmetric linear-systems. Math Comput 37(155):105–126

    Article  MathSciNet  MATH  Google Scholar 

  167. Saad Y (1982) The Lanczos biorthogonalization algorithm and other oblique projection methods for solving large unsymmetric linear systems. SIAM J Numer Anal 19(3):485–506

    Article  MathSciNet  MATH  Google Scholar 

  168. Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869

    Article  MathSciNet  MATH  Google Scholar 

  169. dos Santos N, Gerbeau JF, Bourgat JF (2008) A partitioned fluid-structure algorithm for elastic thin valves with contact. Comput Methods Appl Mech Eng 197(19):1750–1761

    Article  MathSciNet  MATH  Google Scholar 

  170. Scotti C, Finol E (2007) Compliant biomechanics of abdominal aortic aneurysms: a fluid-structure interaction study. Comput Struct 85(11–14):1097–1113

    Article  Google Scholar 

  171. Shanno D (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656

    Article  MathSciNet  Google Scholar 

  172. Sherman A, Morrison W (1950) Adjustment of an inverse matrix corresponding to changes in the elements of a given column or a given row of the original matrix. Ann Math Stat 21(1):124–127

    Article  MathSciNet  MATH  Google Scholar 

  173. Sidi A (1988) Extrapolation vs projection methods for linear-systems of equations. J Comput Appl Math 22(1):71–88

    Article  MathSciNet  MATH  Google Scholar 

  174. Sidi A, Ford W, Smith D (1986) Acceleration of convergence of vector sequences. SIAM J Numer Anal 23(1):178–196

    Article  MathSciNet  MATH  Google Scholar 

  175. Steger J, Benek J (1987) On the use of composite grid schemes in computational aerodynamics. Comput Methods Appl Mech Eng 64(1–3):301–320

    Article  MathSciNet  MATH  Google Scholar 

  176. Stein K, Benney R, Kalro V, Tezduyar T, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190(3–4):373–386

    Article  MATH  Google Scholar 

  177. Steindorf J (2002) Partitionierte Verfahren für Probleme der Fluid-Struktur Wechselwirkung. PhD Thesis, Technische Universität Braunschweig, Brunswick

  178. Taylor C, Draney M, Ku J, Parker D, Steele B, Wang K, Zarins C (1999) Predictive medicine: computational techniques in therapeutic decision-making. Comput Aided Surg 4(5):231–247

    Article  Google Scholar 

  179. Témam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Arch Ration Mech Anal 33(5):377–385

    Article  MATH  Google Scholar 

  180. Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191(6–7):717–726

    Article  MATH  Google Scholar 

  181. Tezduyar T, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195(17–18):2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  182. Tezduyar T, Sathe S, Stein K (2006) Solution techniques for the fully discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195(41–43):5743–5753

    Article  MathSciNet  MATH  Google Scholar 

  183. Tezduyar T, Sathe S, Schwaab M, Conklin B (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int J Numer Methods Fluids 57(5):601–629

    Article  MathSciNet  MATH  Google Scholar 

  184. Toselli A (2005) Domain decomposition methods—algorithms and theory. Computational mathematics, vol 34. Springer, Berlin

    MATH  Google Scholar 

  185. Turek S, Hron J (2006) Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction—modelling, simulation, optimisation. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 371–385

    Chapter  Google Scholar 

  186. Van Paepegem W, Blommaert C, De Baere I, Degrieck J, De Backer G, De Rouck J, Degroote J, Vierendeels J, Matthys S, Taerwe L (2011) Slamming wave impact of a composite buoy for wave energy applications: design and large scale testing. Polym Compos 32(5):700–713

    Article  Google Scholar 

  187. Varyani K, Gatiganti R, Gerigk M (2000) Motions and slamming impact on catamaran. Ocean Eng 27(7):729–747

    Article  Google Scholar 

  188. Vierendeels J (2006) Implicit coupling of partitioned fluid-structure interaction solvers using reduced-order models. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction—modelling, simulation, optimisation. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 1–18

    Chapter  Google Scholar 

  189. Vierendeels J, Riemslagh K, Dick E (1999) A multigrid semi-implicit line-method for viscous incompressible and low-Mach-number flows on high aspect ratio grids. J Comput Phys 154(2):310–341

    Article  MATH  Google Scholar 

  190. Vierendeels J, Riemslagh K, Dick E, Verdonck P (2000) Computer simulation of intraventricular flow and pressure gradients during diastole. J Biomech Eng 122(6):667–674

    Article  Google Scholar 

  191. Vierendeels J, Dumont K, Dick E, Verdonck P (2005) Analysis and stabilization of fluid-structure interaction algorithm for rigid-body motion. AIAA J 43(12):2549–2557

    Article  Google Scholar 

  192. Vierendeels J, Lanoye L, Degroote J, Verdonck P (2007) Implicit coupling of partitioned fluid-structure interaction problems with reduced order models. Comput Struct 85(11–14):970–976

    Article  Google Scholar 

  193. Vierendeels J, Dumont K, Verdonck P (2008) A partitioned strongly coupled fluid-structure interaction method to model heart valve dynamics. J Comput Appl Math 215(2):602–609

    Article  MathSciNet  MATH  Google Scholar 

  194. Walhorn E, Kölke A, Hübner B, Dinkler D (2005) Fluid-structure coupling within a monolithic model involving free surface flows. Comput Struct 83(25–26):2100–2111

    Article  Google Scholar 

  195. Wall W, Rabczuk T (2008) Fluid-structure interaction in lower airways of CT-based lung geometries. Int J Numer Methods Fluids 57(5):653–675

    Article  MathSciNet  MATH  Google Scholar 

  196. Wall W, Gerstenberger A, Gamnitzer P, Förster C, Ramm E (2006) Large deformation fluid-structure interaction—advances in ALE methods and new fixed grid approaches. In: Bungartz HJ, Schäfer M (eds) Fluid-structure interaction—modelling, simulation, optimisation. Lecture notes in computational science and engineering, vol 53. Springer, Berlin, pp 195–228

    Chapter  Google Scholar 

  197. Wall W, Genkinger S, Ramm E (2007) A strong coupling partitioned approach for fluid-structure interaction with free surfaces. Comput Fluids 36(1):169–183

    Article  MATH  Google Scholar 

  198. Wall W, Gamnitzer P, Gerstenberger A (2008) Fluid-structure interaction approaches on fixed grids based on two different domain decomposition ideas. Int J Comput Fluid Dyn 22(6):411–427

    Article  MathSciNet  MATH  Google Scholar 

  199. Wang X, Liu W (2004) Extended immersed boundary method using FEM and RKPM. Comput Methods Appl Mech Eng 193(12–14):1305–1321

    Article  MATH  Google Scholar 

  200. Wilson N, Arko F, Taylor C (2005) Predicting changes in blood flow in patient-specific operative plans for treating aortoiliac occlusive disease. Comput Aided Surg 10(4):257–277

    Google Scholar 

  201. Wüchner R, Kupzok A, Bletzinger KU (2007) A framework for stabilized partitioned analysis of thin membrane-wind interaction. Int J Numer Methods Fluids 54(6–8):945–963

    Article  MATH  Google Scholar 

  202. Wynn P (1962) Acceleration technique for iterated vector and matrix problems. Math Comput 16(79):301–322

    Article  MathSciNet  MATH  Google Scholar 

  203. Yeckel A, Lun L, Derby J (2009) An approximate block Newton method for coupled iterations of nonlinear solvers: theory and conjugate heat transfer applications. J Comput Phys 228(23):8566–8588

    Article  MathSciNet  MATH  Google Scholar 

  204. Yu Z (2005) A DLM/FD method for fluid/flexible-body interactions. J Comput Phys 207(1):1–27

    Article  MATH  Google Scholar 

  205. van der Zee K, van Brummelen E, de Borst R (2010) Goal-oriented error estimation and adaptivity for free-boundary problems: the domain-map linearization approach. SIAM J Sci Comput 32(2):1064–1092

    Article  MathSciNet  MATH  Google Scholar 

  206. Zhang L, Gerstenberger A, Wang X, Liu W (2004) Immersed finite element method. Comput Methods Appl Mech Eng 193(21–22):2051–2067

    Article  MathSciNet  MATH  Google Scholar 

  207. van Zuijlen A, Bijl H (2005) Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Comput Struct 83(2–3):93–105

    Article  Google Scholar 

  208. van Zuijlen A, Bijl H (2009) Multi-level acceleration for sub-iterations in partitioned fluid-structure interaction. AIP Conf Proc 1168:1347–1350

    Article  Google Scholar 

  209. van Zuijlen A, de Boer A, Bijl H (2007) Higher-order time integration through smooth mesh deformation for 3D fluid-structure interaction simulations. J Comput Phys 224(1):414–430

    Article  MathSciNet  MATH  Google Scholar 

  210. van Zuijlen A, Bosscher S, Bijl H (2007) Two level algorithms for partitioned fluid-structure interaction computations. Comput Methods Appl Mech Eng 196(8):1458–1470

    Article  MATH  Google Scholar 

Download references

Acknowledgements

I greatly appreciate the support and guidance by my Ph.D. supervisor, Prof. Jan Vierendeels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joris Degroote.

Additional information

Joris Degroote gratefully acknowledges funding by a Ph.D. fellowship and a post-doctoral fellowship of the Research Foundation—Flanders (FWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degroote, J. Partitioned Simulation of Fluid-Structure Interaction. Arch Computat Methods Eng 20, 185–238 (2013). https://doi.org/10.1007/s11831-013-9085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-013-9085-5

Keywords

Navigation