Skip to main content
Log in

Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In the recent years, fluid structure interaction (FSI) models of the aortic valve and root have become increasingly common for two main reasons. The medical reason is that millions of patients suffer from aortic valve disorders. The second reason is that this challenging problem combines several fields of computational mechanics. The key motive for these modeling attempts is their potential to shed light on phenomena that cannot be captured in experiments or in simplified models of solely hemodynamics or structural mechanics. The aim of this paper is to review the state-of-the-art FSI methods in general and their application to the aortic valve in particular. A brief overview of the medical background is provided. The numerical methods and appropriate assumptions are then presented with examples of previous aortic valve models, followed by a discussion of the limitation of current models and recommendations for overcoming them in future research. The methods presented in this paper could help readers to choose the modelling approach and assumptions that are most suitable for their goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Thubrikar M (1990) The aortic valve. CRC Press, Boca Raton

    Google Scholar 

  2. David TE (1999) Surgery of the aortic valve. Curr Prob Surg 36:421–504. doi:10.1016/S0011-3840(99)80802-8

    Article  Google Scholar 

  3. Bellhouse BJ (1969) Velocity and pressure distributions in the aortic valve. J Fluid Mech 37:587–600. doi:10.1017/S0022112069000747

    Article  Google Scholar 

  4. Moore KL, Dalley AF, Agur AMR (2013) Clinically oriented anatomy, 7th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  5. Yoganathan AP, Lemmon JD, Ellis JT (2000) Heart valve dynamics. In: Bronzino JD (ed) The biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton, Chap 29, pp 1–15

  6. Missirlis YF, Chong M (1978) Aortic valve mechanics—part I: material properties of natural porcine aortic valves. J Bioeng 2(3–4):287–300

  7. Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E, Hamdan A, Haj-Ali R (2013) Fluid-structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J Biomech Eng 135(10):101001–101006. doi:10.1115/1.4024824

    Article  Google Scholar 

  8. Rock CA, Han L, Doehring TC (2014) Complex collagen fiber and membrane morphologies of the whole porcine aortic valve. PLoS ONE 9(1):e86087. doi:10.1371/journal.pone.0086087

    Article  Google Scholar 

  9. Kim HS (2009) Nonlinear multi-scale anisotropic material and structural models for prosthetic and native aortic heart valves. Georgia Institute of Technology, Atlanta

    Google Scholar 

  10. Robinson PS, Johnson SL, Evans MC, Barocas VH, Tranquillo RT (2008) Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng Part A 14(1):83–95. doi:10.1089/ten.a.2007.0148

    Article  Google Scholar 

  11. Tower TT, Neidert MR, Tranquillo RT (2002) Fiber alignment imaging during mechanical testing of soft tissues. Ann Biomed Eng 30(10):1221–1233. doi:10.1114/1.1527047

    Article  Google Scholar 

  12. Balguid A, Driessen NJ, Mol A, Schmitz JP, Verheyen F, Bouten CV, Baaijens FP (2008) Stress related collagen ultrastructure in human aortic valves—implications for tissue engineering. J Biomech 41(12):2612–2617. doi:10.1016/j.jbiomech.2008.06.031

    Article  Google Scholar 

  13. Sacks MS, Smith DB, Hiester ED (1998) The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res 41(1):131–141. doi:10.1002/(SICI)1097-4636(199807)41:1<131::AID-JBM16>3.0.CO;2-Q

  14. Sauren AA, van Hout MC, van Steenhoven AA, Veldpaus FE, Janssen JD (1983) The mechanical properties of porcine aortic valve tissues. J Biomech 16(5):327–337. doi:10.1016/0021-9290(83)90016-7

    Article  Google Scholar 

  15. Mayne AS, Christie GW, Smaill BH, Hunter PJ, Barratt-Boyes BG (1989) An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques. J Thorac Cardiovasc Surg 98(2):170–180

    Google Scholar 

  16. Sacks MS (1999) A method for planar biaxial mechanical testing that includes in-plane shear. J Biomech Eng 121(5):551–555. doi:10.1115/1.2835086

    Article  Google Scholar 

  17. Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp-part I: experimental results. J Biomech Eng 122(1):23–30. doi:10.1115/1.429624

    Article  Google Scholar 

  18. Stella JA, Liao J, Sacks MS (2007) Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech 40(14):3169–3177. doi:10.1016/j.jbiomech.2007.04.001

    Article  Google Scholar 

  19. Bentall H, De Bono A (1968) A technique for complete replacement of the ascending aorta. Thorax 23(4):338–339. doi:10.1136/thx.23.4.338

    Article  Google Scholar 

  20. David TE, Feindel CM (1992) An aortic valve-sparing operation for patients with aortic incompetence and aneurysm of the ascending aorta. J Thorac Cardiovasc Surg 103(4):617–621

    Google Scholar 

  21. Sarsam MA, Yacoub M (1993) Remodeling of the aortic valve anulus. J Thorac Cardiovasc Surg 105(3):435–438

    Google Scholar 

  22. De Paulis R, De Matteis GM, Nardi P, Scaffa R, Buratta MM, Chiariello L (2001) Opening and closing characteristics of the aortic valve after valve-sparing procedures using a new aortic root conduit. Ann Thorac Surg 72:487–494. doi:10.1016/S0003-4975(01)02747-3

    Article  Google Scholar 

  23. Conti CA, Della Corte A, Votta E, Del Viscovo L, Bancone C, De Santo LS, Redaelli A (2010) Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data. J Thorac Cardiovasc Surg 140(4):890–896. doi:10.1016/j.jtcvs.2010.01.016

    Article  Google Scholar 

  24. Jermihov PN, Jia L, Sacks MS, Gorman RC, Gorman JH 3rd, Chandran KB (2011) Effect of geometry on the leaflet stresses in simulated models of congenital bicuspid aortic valves. Cardiovasc Eng Technol 2(1):48–56. doi:10.1007/s13239-011-0035-9

    Article  Google Scholar 

  25. Marom G, Kim HS, Rosenfeld M, Raanani E, Haj-Ali R (2013) Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 51(8):839–848. doi:10.1007/s11517-013-1055-4

    Article  Google Scholar 

  26. Braverman AC, Guven H, Beardslee MA, Makan M, Kates AM, Moon MR (2005) The bicuspid aortic valve. Curr Probl Cardiol 30(9):470–522. doi:10.1016/j.cpcardiol.2005.06.002

    Article  Google Scholar 

  27. Rajamannan NM, Bonow RO, Rahimtoola SH (2007) Calcific aortic stenosis: an update. Nat Clin Pract Cardiovasc Med 4(5):254–262. doi:10.1038/ncpcardio0827

    Article  Google Scholar 

  28. Otto CM (2008) Calcific aortic stenosis—time to look more closely at the valve. New Engl J Med 359(13):1395–1398. doi:10.1056/NEJMe0807001

    Article  Google Scholar 

  29. Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048. doi:10.1161/CIRCULATIONAHA.108.778886

    Article  Google Scholar 

  30. Kunzelman KS, Grande KJ, David TE, Cochran RP, Verrier ED (1994) Aortic root and valve relationships. Impact on surgical repair. J Thorac Cardiovasc Surg 107(1):162–170

    Google Scholar 

  31. Sachdev V, Matura LA, Sidenko S, Ho VB, Arai AE, Rosing DR, Bondy CA (2008) Aortic valve disease in Turner syndrome. J Am Coll Cardiol 51(19):1904–1909. doi:10.1016/j.jacc.2008.02.035

    Article  Google Scholar 

  32. Schaefer BM, Lewin MB, Stout KK, Gill E, Prueitt A, Byers PH, Otto CM (2008) The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94(12):1634–1638. doi:10.1136/hrt.2007.132092

    Article  Google Scholar 

  33. Blanke P, Siepe M, Reinohl J, Zehender M, Beyersdorf F, Schlensak C, Langer M, Pache G (2010) Assessment of aortic annulus dimensions for Edwards SAPIEN Transapical Heart Valve implantation by computed tomography: calculating average diameter using a virtual ring method. Eur J Cardiothorac Surg 38(6):750–758. doi:10.1016/j.ejcts.2010.03.039

    Article  Google Scholar 

  34. Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ (2006) Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J Biomech 39(14):2665–2672. doi:10.1016/j.jbiomech.2005.08.012

    Article  Google Scholar 

  35. Rankin JS, Dalley AF, Crooke PS, Anderson RH (2008) A ’hemispherical model of aortic valvar geometry. J Heart Valve Dis 17(2):179–186

    Google Scholar 

  36. Claiborne TE, Sheriff J, Kuetting M, Steinseifer U, Slepian MJ, Bluestein D (2013) In vitro evaluation of a novel hemodynamically optimized trileaflet polymeric prosthetic heart valve. J Biomech Eng 135(2):021021. doi:10.1115/1.4023235

    Article  Google Scholar 

  37. Reul H, Vahlbruch A, Giersiepen M, Schmitzrode T, Hirtz V, Effert S (1990) The geometry of the aortic root in health, at valve disease and after valve-replacement. J Biomech 23(2):181–191. doi:10.1016/0021-9290(90)90351-3

    Article  Google Scholar 

  38. Soncini M, Votta E, Zinicchino S, Burrone V, Fumero R, Mangini A, Lemma M, Antona C, Redaelli A (2006) Finite element simulations of the physiological aortic root and valve sparing corrections. J Mech Med Biol 6(1):91–99. doi:10.1142/S0219519406001790

    Article  Google Scholar 

  39. Haj-Ali R, Marom G, Ben Zekry S, Rosenfeld M, Raanani E (2012) A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. J Biomech 45(14):2392–2397. doi:10.1016/j.jbiomech.2012.07.017

    Article  Google Scholar 

  40. Fabius TM, Mecozzi G, Grandjean JG, Schuurman R (2014) Letter to the Editor regarding “A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling”. J Biomech 47(5):1238–1239. doi:10.1016/j.jbiomech.2013.12.038

    Article  Google Scholar 

  41. Haj-Ali R, Marom G (2014) Authors’ reply regarding “A general three dimensional parametric geometry of the native aortic valve and root for biomechanical modeling”. J Biomech 47(5):1239. doi:10.1016/j.jbiomech.2013.12.037

    Article  Google Scholar 

  42. Schoenhagen P, Tuzcu EM, Kapadia SR, Desai MY, Svensson LG (2009) Three-dimensional imaging of the aortic valve and aortic root with computed tomography: new standards in an era of transcatheter valve repair/implantation. Eur Heart J 30(17):2079–2086. doi:10.1093/eurheartj/ehp260

    Article  Google Scholar 

  43. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (1998) Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng 26(4):534–545

    Article  Google Scholar 

  44. Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS (2003) A coupled fluid–structure finite element model of the aortic valve and root. J Heart Valve Dis 12(6):781–789

    Google Scholar 

  45. Sirois E, Wang Q, Sun W (2011) Fluid simulation of a transcatheter aortic valve deployment into a patient-specific aortic root. Cardiovasc Eng Technol 2:186–195. doi:10.1007/s13239-011-0037-7

    Article  Google Scholar 

  46. Ionasec RI, Voigt I, Georgescu B, Wang Y, Houle H, Vega-Higuera F, Navab N, Comaniciu D (2010) Patient-specific modeling and quantification of the aortic and mitral valves from 4-D cardiac CT and TEE. IEEE Trans Med Imaging 29(9):1636–1651. doi:10.1109/TMI.2010.2048756

    Article  Google Scholar 

  47. Veronesi F, Corsi C, Sugeng L, Mor-Avi V, Caiani EG, Weinert L, Lamberti C, Lang RM (2009) A study of functional anatomy of aortic-mitral valve coupling using 3D matrix transesophageal echocardiography. Circ Cardiovasc Imaging 2(1):24–31. doi:10.1161/CIRCIMAGING.108.785907

    Article  Google Scholar 

  48. Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS (2000) Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann Thorac Surg 69(6):1851–1857. doi:10.1016/S0003-4975(00)01307-2

    Article  Google Scholar 

  49. Wang Q, Sirois E, Sun W (2012) Patient-specific modeling of biomechanical interaction in transcatheter aortic valve deployment. J Biomech 45(11):1965–1971. doi:10.1016/j.jbiomech.2012.05.008

    Article  Google Scholar 

  50. Vierendeels J, Dumont K, Verdonck PR (2008) A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J Comput Appl Math 215(2):602–609. doi:10.1016/j.cam.2006.04.067

    Article  MATH  MathSciNet  Google Scholar 

  51. Katayama S, Umetani N, Sugiura S, Hisada T (2008) The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J Thorac Cardiovasc Surg 136 (6):1528–1535, 1535 e1521. doi:10.1016/j.jtcvs.2008.05.054

  52. Sun W, Sacks MS (2005) Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech Model Mechanobiol 4(2–3):190–199. doi:10.1007/s10237-005-0075-x

    Article  Google Scholar 

  53. Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

  54. Holzapfel GA, Eberlein R, Wriggers P, Weizsacker HW (1996) Large strain analysis of soft biological membranes: formulation and finite element analysis. Comput Methods Appl Mech Eng 132(1–2):45–61. doi:10.1016/0045-7825(96)00999-1

    Article  MATH  Google Scholar 

  55. Holzapfel GA, Eberlein R, Wriggers P, Weizsacker HW (1996) A new axisymmetrical membrane element for anisotropic, finite strain analysis of arteries. Commun Numer Methods Eng 12(8):507–517. doi:10.1002/(Sici)1099-0887(199608)12:8<507:Aid-Cnm998>3.3.Co;2-B

  56. Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng 125(3):372–380. doi:10.1115/1.1572518

    Article  Google Scholar 

  57. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35. doi:10.1098/rsif.2005.0073

    Article  Google Scholar 

  58. Holzapfel GA, Ogden RW (2009) On planar biaxial tests for anisotropic nonlinearly elastic solids. Math Mech Solids 14(5):474–489. doi:10.1177/1081286507084411

    Article  MATH  Google Scholar 

  59. Auricchio F, Ferrara A, Morganti S (2012) Comparison and critical analysis of invariant-based models with respect to their ability in fitting human aortic valve data. Ann Solid Struct Mech 4(1–2):1–14. doi:10.1007/s12356-012-0028-x

    Article  Google Scholar 

  60. Humphrey JD, Yin FC (1987) On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 109(4):298–304. doi:10.1115/1.3138684

    Article  Google Scholar 

  61. De Hart J, Baaijens FP, Peters GW, Schreurs PJ (2003) A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech 36(5):699–712. doi:10.1016/S0021-9290(02)00448-7

    Article  Google Scholar 

  62. Driessen NJ, Bouten CV, Baaijens FP (2005) Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng 127(2):329–336. doi:10.1115/1.1865187

    Article  Google Scholar 

  63. Weinberg EJ, Kaazempur Mofrad MR (2007) Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng 7(4):140–155. doi:10.1007/s10558-007-9038-4

    Article  Google Scholar 

  64. Ogden RW (1972) Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc Math Phys Eng Sci 326(1567):565–584. doi:10.1098/rspa.1972.0026

    Article  MATH  Google Scholar 

  65. Marom G, Halevi R, Haj-Ali R, Rosenfeld M, Schafers HJ, Raanani E (2013) Numerical model of the aortic root and valve: optimization of graft size and sinotubular junction to annulus ratio. J Thorac Cardiovasc Surg 146(5):1227–1231. doi:10.1016/j.jtcvs.2013.01.030

    Article  Google Scholar 

  66. Merryman WD, Bieniek PD, Guilak F, Sacks MS (2009) Viscoelastic properties of the aortic valve interstitial cell. J Biomech Eng 131(4):041005. doi:10.1115/1.3049821

    Article  Google Scholar 

  67. Kim HG, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275. doi:10.1007/s10439-007-9409-4

    Article  Google Scholar 

  68. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC (2005) Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am J Physiol Heart Circ Physiol 288(3):H1209–1217. doi:10.1152/ajpheart.01129.2003

    Article  Google Scholar 

  69. Marom G, Haj-Ali R, Raanani E, Schäfers HJ, Rosenfeld M (2012) A fluid–structure interaction model of coaptation in fully compliant aortic valves. Med Biol Eng Comput 50:173–182. doi:10.1007/s11517-011-0849-5

    Article  Google Scholar 

  70. Petyt M (2010) Introduction to finite element vibration analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  71. Wriggers P (2006) Computational contact mechanics. Springer, Berlin. doi:10.1007/978-3-540-32609-0

    Book  MATH  Google Scholar 

  72. Tezduyar TE, Sathe S (2007) Modelling of fluid–structure interactions with the space–time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900. doi:10.1002/Fld.1430

    Article  MATH  MathSciNet  Google Scholar 

  73. Astorino M, Gerbeau JF, Pantz O, Traore KF (2009) Fluid–structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46):3603–3612. doi:10.1016/j.cma.2008.09.012

    Article  MATH  MathSciNet  Google Scholar 

  74. Li JKJ (2004) Dynamics of the vascular system. Series on bioengineering and biomedical engineering. World Scientific, Singapore

    Google Scholar 

  75. Degroote J, Swillens A, Bruggeman P, Haelterman R, Segers P, Vierendeels J (2010) Simulation of fluid structure interaction with the interface artificial compressibility method. Int J Numer Methods Biomed Eng 26(3–4):276–289. doi:10.1002/Cnm.1276

    Article  MATH  MathSciNet  Google Scholar 

  76. Wang SH, Lee LP, Lee JS (2001) A linear relation between the compressibility and density of blood. J Acoust Soc Am 109(1):390–396. doi:10.1121/1.1333419

    Article  MathSciNet  Google Scholar 

  77. Yoganathan AP, Chandran KB, Sotiropoulos F (2005) Flow in prosthetic heart valves: state-of-the-art and future directions. Ann Biomed Eng 33(12):1689–1694. doi:10.1007/s10439-005-8759-z

    Article  Google Scholar 

  78. Schiestel R (2010) Modeling and simulation of turbulent flows. Wiley, Hoboken. doi:10.1002/9780470610848

    Google Scholar 

  79. Varghese SS, Frankel SH, Fischer PF (2008) Modeling transition to turbulence in eccentric stenotic flows. J Biomech Eng 130(1):014503. doi:10.1115/1.2800832

    Article  Google Scholar 

  80. Kiris C, Kwak D, Rogers S, Chang ID (1997) Computational approach for probing the flow through artificial heart devices. J Biomech Eng 119(4):452–460. doi:10.1115/1.2798293

    Article  Google Scholar 

  81. Ge L, Leo HL, Sotiropoulos F, Yoganathan AP (2005) Flow. in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127(5):782–797. doi:10.1115/1.1993665

    Article  Google Scholar 

  82. Bluestein D, Li YM, Krukenkamp IB (2002) Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J Biomech 35(12):1533–1540. doi:10.1016/S0021-9290(02)00093-3

    Article  Google Scholar 

  83. Alemu Y, Bluestein D (2007) Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs 31(9):677–688. doi:10.1111/j.1525-1594.2007.00446.x

    Article  Google Scholar 

  84. Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D (2004) Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng 32(8):1058–1066

    Article  Google Scholar 

  85. Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng 125(5):709–718

    Article  Google Scholar 

  86. Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan AP (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105. doi:10.1063/1.2743261

    Article  Google Scholar 

  87. Nobili M, Morbiducci U, Ponzini R, Del Gaudio C, Balducci A, Grigioni M, Maria Montevecchi F, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach. J Biomech 41(11):2539–2550. doi:10.1016/j.jbiomech.2008.05.004

    Article  Google Scholar 

  88. De Tullio M, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259–290. doi:10.1017/S0022112008005156

    Article  MATH  Google Scholar 

  89. de Tullio MD, Afferrante L, Demelio G, Pascazio G, Verzicco R (2011) Fluid–structure interaction of deformable aortic prostheses with a bileaflet mechanical valve. J Biomech 44(9):1684–1690. doi:10.1016/j.jbiomech.2011.03.036

    Article  Google Scholar 

  90. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76. doi:10.1007/s11831-010-9040-7

    Article  MathSciNet  Google Scholar 

  91. Liu X, Chinnakonda M, Duraiswamy N (2011) Fluid–Structure interaction analysis of prosthetic aortic valve using abaqus smoothed particle hydrodynamic (SPH) analysis. In: ASME emerging technologies’ 6th frontiers in biomedical devices conference & exhibition, Irvine, CA, 2011, pp BioMed 2011-66082

  92. Warren PB (1998) Dissipative particle dynamics. Curr Opin Colloid Interface Sci 3(6):620–624. doi:10.1016/S1359-0294(98)80089-7

    Article  Google Scholar 

  93. Yamaguchi T, Ishikawa T, Imai Y, Matsuki N, Xenos M, Deng Y, Bluestein D (2010) Particle-based methods for multiscale modeling of blood flow in the circulation and in devices: challenges and future directions. Ann Biomed Eng 38(3):1225–1235. doi:10.1007/s10439-010-9904-x

    Article  Google Scholar 

  94. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30(1):329–364. doi:10.1146/annurev.fluid.30.1.329

    Article  MathSciNet  Google Scholar 

  95. Pelliccioni O, Cerrolaza M, Herrera M (2007) Lattice Boltzmann dynamic simulation of a mechanical heart valve device. Math Comput Simul 75(1–2):1–14. doi:10.1016/j.matcom.2006.08.005

    Article  MATH  MathSciNet  Google Scholar 

  96. Krafczyk M, Cerrolaza M, Schulz M, Rank E (1998) Analysis of 3D transient blood flow passing through an artificial aortic valve by lattice-Boltzmann methods. J Biomech 31(5):453–462. doi:10.1016/s0021-9290(98)00036-0

    Article  Google Scholar 

  97. Yun BM, McElhinney DB, Arjunon S, Mirabella L, Aidun CK, Yoganathan AP (2014) Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J Biomech (0). doi:10.1016/j.jbiomech.2014.06.018

  98. Yun BM, Dasi LP, Aidun CK, Yoganathan AP (2014) Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J Fluid Mech 743:170–201. doi:10.1017/Jfm.2014.54

    Article  MathSciNet  Google Scholar 

  99. Buxton GA, Clarke N (2006) Computational phlebology: the simulation of a vein valve. J Biol Phys 32(6):507–521. doi:10.1007/s10867-007-9033-4

    Article  Google Scholar 

  100. Dumont K, Stijnen JMA, Vierendeels J, Van De Vosse RN, Verdonck PR (2004) Validation of a fluid–structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Method Biomech Biomed Eng 7:139–146. doi:10.1080/10255840410001715222

    Article  Google Scholar 

  101. Vierendeels J, Dumont K, Dick E, Verdonck P (2005) Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion. AIAA J 43(12):2549–2557. doi:10.2514/1.3660

    Article  Google Scholar 

  102. van Loon R (2005) A 3D method for modeling the fluid–structure interaction of heart valves. Ph.D thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands

  103. Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103. doi:10.1007/s10047-006-0365-9

    Article  Google Scholar 

  104. Nobili M, Morbiducci U, Ponzini R, Gaudio CD, Balducci A, Grigioni M, Montevecchi FM, Redaelli A (2008) Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J Biomech 41:2539–2550. doi:10.1016/j.jbiomech.2008.05.004

    Article  Google Scholar 

  105. Dumont K, Vierendeels J, Kaminsky R, van Nooten G, Verdonck P, Bluestein D (2007) Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng 129(4):558–565. doi:10.1115/1.2746378

    Article  Google Scholar 

  106. Penrose JMT, Staples CJ (2002) Implicit fluid–structure coupling for simulation of cardiovascular problems. Int J Numer Methods Fluids 40(3–4):467–478. doi:10.1002/Fld.306

    Article  MATH  Google Scholar 

  107. Lai YG, Chandran KB, Lemmon J (2002) A numerical simulation of mechanical heart valve closure fluid dynamics. J Biomech 35(7):881–892. doi:10.1016/S0021-9290(02)00056-8

    Article  Google Scholar 

  108. Cheng R, Lai YG, Chandran KB (2004) Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng 32(11):1471–1483. doi:10.1114/B:ABME.0000049032.51742.10

    Article  Google Scholar 

  109. Hose DR, Narracott AJ, Penrose JM, Baguley D, Jones IP, Lawford PV (2006) Fundamental mechanics of aortic heart valve closure. J Biomech 39(5):958–967. doi:10.1016/j.jbiomech.2005.01.029

    Article  Google Scholar 

  110. Katayama S, Umetani N, Sugiura S, Hisada T (2008) The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J Thorac Cardiovasc Surg 136:1528–1535

    Article  Google Scholar 

  111. Griffith BE (2012) Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int J Numer Methods Biomed Eng 28(3):317–345. doi:10.1002/Cnm.1445

    Article  MATH  MathSciNet  Google Scholar 

  112. Griffith BE, Luo XY, McQueen DM, Peskin CS (2009) Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method. Int J Appl Mech 1(1):137–177. doi:10.1142/S1758825109000113

    Article  Google Scholar 

  113. Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47(2):131–141. doi:10.1007/s11517-008-0359-2

    Article  Google Scholar 

  114. Watanabe H, Sugiura S, Kafuku H, Hisada T (2004) Multiphysics simulation of left ventricular filling dynamics using fluid–structure interaction finite element method. Biophys J 87(3):2074–2085. doi:10.1529/biophysj.103.035840

    Article  Google Scholar 

  115. Heldt T, Shim EB, Kamm RD, Mark RG (2002) Computational modeling of cardiovascular response to orthostatic stress. J Appl Physiol 92(3):1239–1254. doi:10.1152/japplphysiol.00241.2001

    Article  Google Scholar 

  116. McQueen DM, Peskin CS (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM SIGGRAPH Comput Graph 34(1):56. doi:10.1145/563788.604453

    Article  Google Scholar 

  117. Oertel H, Spiegel K, Donisi S (2006) Modelling the human cardiac fluid mechanics, 2nd edn. Universitätsverlag Karlsruhe, Karlsruhe

    Google Scholar 

  118. Vigmond EJ, Clements C, McQueen DM, Peskin CS (2008) Effect of bundle branch block on cardiac output: a whole heart simulation study. Prog Biophys Mol Biol 97:520–542

    Article  Google Scholar 

  119. David TE (2008) Aortic valve repair and aortic valve-sparing operations. In: Cohn LH (ed) Cardiac surgery in the adult, 4th edn. McGraw-Hill Medical, New York, pp 753–766

    Google Scholar 

  120. Donea J, Huerta A, Ponthot JP, Rodríguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. In: Encyclopedia of computational mechanics. Wiley, New York. doi:10.1002/0470091355.ecm009

  121. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25(3):220–252. doi:10.1016/0021-9991(77)90100-0

    Article  MATH  MathSciNet  Google Scholar 

  122. Glowinski R, Pan TW, Periaux J (1998) Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies. Comput Methods Appl Mech Eng 151(1–2):181–194. doi:10.1016/S0045-7825(97)00116-3

    Article  MATH  MathSciNet  Google Scholar 

  123. Makhijani VB, Yang HQ, Dionne PJ, Thubrikar MJ (1997) Three-dimensional coupled fluid–structure simulation of pericardial bioprosthetic aortic valve function. ASAIO J 43(5):M387–392

    Article  Google Scholar 

  124. Weinberg EJ, Mack PJ, Schoen FJ, Garcia-Cardena G, Kaazempur Mofrad MR (2010) Hemodynamic environments from opposing sides of human aortic valve leaflets evoke distinct endothelial phenotypes in vitro. Cardiovasc Eng 10(1):5–11. doi:10.1007/s10558-009-9089-9

  125. Coirier WJ, Powell KG (1996) Solution-adaptive Cartesian cell approach for viscous and inviscid flows. AIAA J 34(5):938–945. doi:10.2514/3.13171

    Article  MATH  Google Scholar 

  126. Marom G, Haj-Ali R, Rosenfeld M, Schafers HJ, Raanani E (2013) Aortic root numeric model: annulus diameter prediction of effective height and coaptation in post-aortic valve repair. J Thorac Cardiovasc Surg 145(2):406–411. doi:10.1016/j.jtcvs.2012.01.080

    Article  Google Scholar 

  127. Marom G, Haj-Ali R, Rosenfeld M, Schafers HJ, Raanani E (2013) Aortic root numeric model: correlation between intraoperative effective height and diastolic coaptation. J Thorac Cardiovasc Surg 145(1):303–304. doi:10.1016/j.jtcvs.2012.08.043

    Article  Google Scholar 

  128. Griffith BE, Flamini V, DeAnda A, Scotten L (2013) Simulating the dynamics of an aortic valve prosthesis in a pulse duplicator: numerical methods and initial experience. J Med Device 7(4):0409121–0409122. doi:10.1115/1.4025768

    Article  Google Scholar 

  129. Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344. doi:10.1007/s10439-009-9807-x

    Article  Google Scholar 

  130. Le TB, Sotiropoulos F (2013) Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J Comput Phys 244:41–62. doi:10.1016/j.jcp.2012.08.036

    Article  MathSciNet  Google Scholar 

  131. Watton PN, Luo XY, Wang X, Bernacca GM, Molloy P, Wheatley DJ (2007) Dynamic modelling of prosthetic chorded mitral valves using the immersed boundary method. J Biomech 40(3):613–626. doi:10.1016/j.jbiomech.2006.01.025

    Article  Google Scholar 

  132. Yao J, Liu GR, Narmoneva DA, Hinton RB, Zhang Z-Q (2012) Immersed smoothed finite element method for fluid–structure interaction simulation of aortic valves. Comput Mech 50(6):789–804. doi:10.1007/s00466-012-0781-z

    Article  MATH  MathSciNet  Google Scholar 

  133. Carmody CJ, Burriesci G, Howard IC, Patterson EA (2006) An approach to the simulation of fluid–structure interaction in the aortic valve. J Biomech 39(1):158–169. doi:10.1016/j.jbiomech.2004.10.038

    Article  Google Scholar 

  134. Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A (2013) Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Med Eng Phys 35(12):1721–1730. doi:10.1016/j.medengphy.2013.07.015

    Article  Google Scholar 

  135. Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R (2006) Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact Cardiovasc Thorac Surg 5(4):373–378. doi:10.1510/icvts.2005.121483

    Article  Google Scholar 

  136. Kunzelman KS, Einstein DR, Cochran RP (2007) Fluid–structure interaction models of the mitral valve: function in normal and pathological states. Philos Trans R Soc Lond B Biol Sci 362(1484):1393–1406. doi:10.1098/rstb.2007.2123

  137. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99(2–3):235–394. doi:10.1016/0045-7825(92)90042-I

    Article  MATH  MathSciNet  Google Scholar 

  138. Aquelet N, Souli M, Olovsson L (2006) Euler–Lagrange coupling with damping effects: application to slamming problems. Comput Methods Appl Mech Eng 195(1–3):110–132. doi:10.1016/j.cma.2005.01.010

    Article  MATH  MathSciNet  Google Scholar 

  139. Weinberg EJ, Schoen FJ, Mofrad MR (2009) A computational model of aging and calcification in the aortic heart valve. PLoS ONE 4(6):e5960. doi:10.1371/journal.pone.0005960

    Article  Google Scholar 

  140. van Loon R, Anderson PD, de Hart J, Baaijens FPT (2004) A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int J Numer Methods Fluids 46(5):533–544. doi:10.1002/fld.775

    Article  MATH  Google Scholar 

  141. Shadden SC, Astorino M, Gerbeau JF (2010) Computational analysis of an aortic valve jet with Lagrangian coherent structures. Chaos 20(1):017512. doi:10.1063/1.3272780

    Article  MathSciNet  Google Scholar 

  142. Hong T, Kim CN (2011) A numerical analysis of the blood flow around the bileaflet mechanical heart valves with different rotational implantation angles. J Hydrodyn 23(5):607–614. doi:10.1016/S1001-6058(10)60156-4

    Article  Google Scholar 

  143. Kemp I, Dellimore K, Rodriguez R, Scheffer C, Blaine D, Weich H, Doubell A (2013) Experimental validation of the fluid–structure interaction simulation of a bioprosthetic aortic heart valve. Aust Phys Eng Sci Med 36(3):363–373. doi:10.1007/s13246-013-0213-1

    Article  Google Scholar 

  144. Chandra S, Rajamannan NM, Sucosky P (2012) Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Biomech Model Mechanobiol 11(7):1085–1096. doi:10.1007/s10237-012-0375-x

    Article  Google Scholar 

  145. Weinberg EJ, Kaazempur Mofrad MR (2008) A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech 41(16):3482–3487. doi:10.1016/j.jbiomech.2008.08.006

    Article  Google Scholar 

  146. Katayama S, Umetani N, Hisada T, Sugiura S (2013) Bicuspid aortic valves undergo excessive strain during opening: a simulation study. J Thorac Cardiovasc Surg 145(6):1570–1576. doi:10.1016/j.jtcvs.2012.05.032

    Article  Google Scholar 

  147. Balachandran K, Sucosky P, Yoganathan AP (2011) Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflamm 2011:263870. doi:10.4061/2011/263870

    Article  Google Scholar 

  148. van Loon R (2010) Towards computational modelling of aortic stenosis. Int J Numer Methods Biomed Eng 26(3–4):405–420. doi:10.1002/cnm.1270

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Marom.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marom, G. Numerical Methods for Fluid–Structure Interaction Models of Aortic Valves. Arch Computat Methods Eng 22, 595–620 (2015). https://doi.org/10.1007/s11831-014-9133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9133-9

Keywords

Navigation