Skip to main content
Log in

Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004; Comput Methods Appl Mech Eng 196:3927–3950, 2007; Int J Numer Methods Eng 76:1250–1279, 2008; Comput Methods Appl Mech Eng 199:79–101, 2010; Arch Comput Methods Eng 1–17. doi:10.1007/s11831-013-9092-6, 2013; Comput Mech Eng Sci 98(3):261–277, 2014; Comput Mech 54:171–191, 2014; J Manuf Sci Eng ASME doi:10.1115/1.4029327, 2015; CIRP J Manuf Sci Technol 10:77–83, 2015; Comput Mech 56:613–630, 2015; Introduction to computational micromechanics. Springer, Berlin, 2008; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In particular with pulsing, via continuous beam chopping or modulation of the voltage.

  2. A rough market percentage breakdown is 30 % motor vehicles, 15 % consumer products, business 11 %, medical 9 and 35 % spread across other fields. Three-dimensional printing was pioneered in 1984 by Hull [38] of the 3D-Systems Corporation.

  3. A closely related method, Electron Beam Melting, fully melts the material and produces dense solids that are void free.

  4. For further details on these types of phenomenological (damage) formulations, the interested reader is referred to the seminal work of Kachanov [41].

  5. Typically, the number of iterations needed to solve the coupled system, if an iterative scheme is used, increases with the time step size and the value of \(\phi \).

  6. For example, for a trapezoidal time-stepping scheme

    $$\begin{aligned} q^*(t_o+\phi \Delta t)_i=-\left({{\varvec{q}}}(t_o)+\left( {\varvec{{\mathbb{K}}}}_i\frac{\theta _j-\theta _i}{||{{\varvec{r}}}_j-{{\varvec{r}}}_i||}\right) |_{t_o+\phi \Delta t}\right) e^{-\frac{\phi \Delta t}{\tau }} +\left( {\varvec{\mathbb{K}}}_i\frac{\theta _j-\theta _i}{||{{\varvec{r}}}_j-{{\varvec{r}}}_i||}\right) |_{t_o+\phi \Delta t}. \end{aligned}$$
    (4.23)
  7. For the class of problems under consideration, due to the linear dependency on \(\Delta t\), \(p \approx 1\).

  8. Typically, \(K_d\) is chosen to be between five to ten iterations.

  9. At the implementation level, since the exact solution is unknown, the following relative error term is used, \(\varpi ^{L+1,K} \mathop{=}\limits ^{\mathrm{def}}||{{\varvec{W}}}^{L+1,K}-{{\varvec{W}}}^{L+1,K-1}||\).

  10. In order to streamline the notation, we drop the cumbersome \({\mathcal{O}}(\Delta t)\)-type terms.

References

  1. Ames WF (1977) Numerical methods for partial differential equations, 2nd edn. Academic Press, New York

    MATH  Google Scholar 

  2. Avci B, Wriggers P (2012) A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech 79:010901-1–010901-7

    Article  Google Scholar 

  3. Bolintineanu DS, Grest GS, Lechman JB, Pierce F, Plimpton SJ, Schunk PR (2014) Particle dynamics modeling methods for colloid suspensions. Comput Part Mech 1(3):321–356

    Article  Google Scholar 

  4. Ahmad Z, Rasekh M, Edirisinghe M (2010) Electrohydrodynamic direct writing of biomedical polymers and composites. Macromol Mater Eng 295:315–319

    Article  Google Scholar 

  5. Akisanya AR, Cocks ACF, Fleck NA (1997) The yield behavior of metal powders. Int J Mech Sci 39:1315–1324

    Article  Google Scholar 

  6. Anand L, Gu C (2000) Granular materials: constitutive equations and shear localization. J Mech Phys Solids 48:1701–1733

    Article  MathSciNet  MATH  Google Scholar 

  7. Axelsson O (1994) Iterative solution methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  8. Bianco M, Bilardi G, Pesavento F, Pucci G, Schrefler BA (2003) A frontal solver tuned for fully coupled non-linear hygro-thermo-mechanical problems. Int J Numer Meth Eng 57(1801):1818

    MATH  Google Scholar 

  9. Brown S, Abou-Chedid G (1994) Yield behavior of metal powder assemblages. J Mech Phys Solids 42:383–398

    Article  Google Scholar 

  10. Campello EMB, Zohdi TI (2014) A computational framework for simulation of the delivery of substances into cells. Int J Numer Methods Biomed Eng 30(11):1132–1152

    Article  MathSciNet  Google Scholar 

  11. Campello EMB, Zohdi TI (2014) Design evaluation of a particle bombardment system to deliver substances into cells. Comput Mech Eng Sci 98(2):221–245

    MathSciNet  Google Scholar 

  12. Cante J, Davalos C, Hernandez JA, Oliver J, Jonsen P, Gustafsson G, Haggblad HA (2014) PFEM-based modeling of industrial granular flows. Comput Part Mech 1(1):47–70

    Article  Google Scholar 

  13. Carbonell JM, Onate E, Suarez B (2010) Modeling of ground excavation with the particle finite element method. J Eng Mech ASCE 136:455–463

    Article  Google Scholar 

  14. Choi S, Park I, Hao Z, Holman HY, Pisano AP, Zohdi TI (2010) Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7):4661–4667

    Article  Google Scholar 

  15. Choi S, Stassi S, Pisano AP, Zohdi TI (2010) Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14):11690–11698

    Article  Google Scholar 

  16. Choi S, Jamshidi A, Seok TJ, Zohdi TI, Wu MC, Pisano AP (2012) Fast, high-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6):3102–3111

    Article  Google Scholar 

  17. Choi S, Pisano AP, Zohdi TI (2013) An analysis of evaporative self-assembly of micro particles in printed picoliter suspension. J Thin Solid Films 537(30):180–189

    Article  Google Scholar 

  18. Deckard C (1986) Method and apparatus for producing parts by selective sintering. U.S. Patent 4,863,538

  19. Demko M, Choi S, Zohdi TI, Pisano AP (2012) High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl Phys Lett 99:253102-1–253102-3

    Google Scholar 

  20. Demko MT, Cheng JC, Pisano AP (2010) High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir 26:16710–16714

    Article  Google Scholar 

  21. Domas F (1997) Eigenschaft profile und Anwendungsübersicht von EPE und EPP. Technical report of the BASF Company

  22. Donev A, Cisse I, Sachs D, Variano EA, Stillinger F, Connelly R, Torquato S, Chaikin P (2004a) Improving the density of jammed disordered packings using ellipsoids. Science 13(303):990–993

    Article  Google Scholar 

  23. Donev A, Stillinger FH, Chaikin PM, Torquato S (2004b) Unusually dense crystal ellipsoid packings. Phys Rev Lett 92:255506

    Article  Google Scholar 

  24. Duran J (1997) Sands, powders and grains. In: An introduction to the physics of granular matter. Springer, Berlin

  25. Dwivedi G, Wentz T, Sampath S, Nakamura T (2010) Assessing process and coating reliability through monitoring of process and design relevant coating properties. J Therm Spray Technol 19:695–712

    Article  Google Scholar 

  26. Fleck NA (1995) On the cold compaction of powders. J Mech Phys Solids 43:1409–1431

    Article  MathSciNet  MATH  Google Scholar 

  27. Fuller SB, Wilhelm EJ, Jacobson JM (2002) Ink-jet printed nanoparticle microelectromechanical systems. J Microelectromech Syst 11:54–60

    Article  Google Scholar 

  28. Gamota D, Brazis P, Kalyanasundaram K, Zhang J (2004) Printed organic and molecular electronics. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  29. Gethin DT, Lewis RW, Ransing RS (2003) A discrete deformable element approach for the compaction of powder systems. Model Simul Mater Sci Eng 11(1):101–114

    Article  Google Scholar 

  30. Ghosh S (2011) Micromechanical analysis and multi-scale modeling using the voronoi cell finite element method. CRC Press/Taylor & Francis, Boca Raton

    Book  MATH  Google Scholar 

  31. Ghosh S, Dimiduk D (2011) Computational methods for microstructure-property relations. Springer NY, Berlin

    Book  Google Scholar 

  32. Gu C, Kim M, Anand L (2001) Constitutive equations for metal powders: application to powder forming processes. Int J Plast 17:147–209

    Article  MATH  Google Scholar 

  33. Hashin Z, Shtrikman S (1962) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10:335–342

    Article  MathSciNet  MATH  Google Scholar 

  34. Hashin Z (1983) Analysis of composite materials: a survey. ASME J Appl Mech 50:481–505

    Article  MATH  Google Scholar 

  35. Householder R (1979) Molding process. U.S. Patent 4,247,508

  36. Huang Y, Leu MC, Mazumdar J, Donmez A (2015) Additive manufacturing: current state, future potential, gaps and needs, and recommendation. J Manuf Sci Eng 137:014001–1

    Article  Google Scholar 

  37. Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low-resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150(7):G412–417

    Article  Google Scholar 

  38. Hull C (1984) Apparatus for production of three-dimensional objects by stereolithography. U.S. Patent 4,575,330

  39. Ignaczak J, Ostoja-Starzewski M (2010) Thermoelasticity with finite wave speeds. Oxford mathematical monographs

  40. Jikov VV, Kozlov SM, Olenik OA (1994) Homogenization of differential operators and integral functionals. Springer, Berlin

    Book  Google Scholar 

  41. Kachanov LM (1986) Introduction to continuum damage mechanics. Martinus Nijoff, Dordricht

    Book  MATH  Google Scholar 

  42. Kachanov M (1993) Elastic solids with many cracks and related problems. Adv Appl Mech, vol 30. Academic Press, New York, p 259

  43. Kachanov M, Tsukrov I, Shafiro B (1994) Effective moduli of solids with cavities of various shapes. Appl Mech Rev 47:S151–S174

    Article  Google Scholar 

  44. Kachanov M, Sevostianov I (2005) On the quantitative characterization of microstructures and effective properties. Int J Solids Struct 42:309–336

    Article  MATH  Google Scholar 

  45. Kansaal A, Torquato S, Stillinger F (2002) Diversity of order and densities in jammed hard-particle packings. Phys Rev E 66:041109

    Article  Google Scholar 

  46. Labra C, Onate E (2009) High-density sphere packing for discrete element method simulations. Commun Numer Methods Eng 25(7):837–849

    Article  MathSciNet  MATH  Google Scholar 

  47. Leonardi A, Wittel FK, Mendoza M, Herrmann HJ (2014) Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions. Comput Part Mech 1(1):3–13

    Article  Google Scholar 

  48. Lewis RW, Gethin DT, Yang XSS, Rowe RC (2005) A combined finite-discrete element method for simulating pharmaceutical powder tableting. Int J Numer Methods Eng 62(853):869

    MATH  Google Scholar 

  49. Lewis RW, Schrefler BA, Simoni L (1992) Coupling versus uncoupling in soil consolidation. Int J Numer Anal Methods Geomech 15:533–548

    Article  Google Scholar 

  50. Lewis RW, Schrefler BA (1998) The finite element method in the static and dynamic deformation and consolidation of porous media, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  51. Liu Y, Nakamura T, Dwivedi G, Valarezo A, Sampath S (2008) Anelastic behavior of plasma sprayed zirconia coatings. J Am Ceram Soc 91:4036–4043

    Article  Google Scholar 

  52. Liu Y, Nakamura T, Srinivasan V, Vaidya A, Gouldstone A, Sampath S (2007) Nonlinear elastic properties of plasma sprayed zirconia coatings and associated relationships to processing conditions. Acta Mater 55:4667–4678

    Article  Google Scholar 

  53. Martin P (2009) Handbook of deposition technologies for films and coatings, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  54. Martin P (2011) Introduction to surface engineering and functionally engineered materials. Scrivener and Elsevier. J Vac Sci Technol A2(2):500

    Google Scholar 

  55. Maxwell JC (1867) On the dynamical theory of gases. Philos Trans Soc Lond 157:49

    Article  Google Scholar 

  56. Maxwell JC (1873) A treatise on electricity and magnetism, 3rd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  57. Mura T (1993) Micromechanics of defects in solids, 2nd edn. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  58. Nakanishi H, Bishop KJM, Kowalczyk B, Nitzan A, Weiss EA, Tretiakov KV, Apodaca MM, Klajn R, Stoddart JF, Grzybowski BA (2009) Photoconductance and inverse photoconductance in thin films of functionalized metal nanoparticles. Nature 460:371–375

    Article  Google Scholar 

  59. Nakamura T, Liu Y (2007) Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis. Int J Solids Struct 44:1990–2009

    Article  MATH  Google Scholar 

  60. Nakamura T, Qian G, Berndt CC (2000) Effects of pores on mechanical properties of plasma sprayed ceramic coatings. J Am Ceram Soc 83:578–584

    Article  Google Scholar 

  61. Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous solids, 2nd edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  62. Onate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800

    Article  MathSciNet  MATH  Google Scholar 

  63. Onate E, Celigueta MA, Idelsohn SR, Salazar F, Surez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48:307–318

    Article  MathSciNet  MATH  Google Scholar 

  64. Onate E, Celigueta MA, Latorre S, Casas G, Rossi R, Rojek J (2014) Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput Part Mech 1(1):85–102

    Article  Google Scholar 

  65. Pöschel T, Schwager T (2004) Computational granular dynamics. Springer, Berlin

    Google Scholar 

  66. Joseph DD, Preziosi L (1989) Heat waves. Rev Modern Phys 61:41–74

    Article  MathSciNet  MATH  Google Scholar 

  67. Qian G, Nakamura T, Berndt CC (1998) Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mech Mater 27:91–110

    Article  Google Scholar 

  68. Ransing RS, Lewis RW, Gethin DT (2004) Using a deformable discrete-element technique to model the compaction behaviour of mixed ductile and brittle particulate systems. Philos Trans R Soc Ser A Math Phys Eng Sci 362(1822):1867–1884

    Article  MATH  Google Scholar 

  69. Rayleigh JW (1892) On the influence of obstacles arranged in rectangular order upon properties of a medium. Philos Mag 32:481–491

    Article  MATH  Google Scholar 

  70. Rojek J, Labra C, Su O, Onate E (2012) Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int J Solids Struct 49:1497–1517. doi:10.1016/j.ijsolstr.2012.02.032

    Article  Google Scholar 

  71. Rojek J (2014) Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Comput Part Mech 1(1):71–84

    Article  Google Scholar 

  72. Samarasinghe SR, Pastoriza-Santos I, Edirisinghe MJ, Reece MJ, Liz-Marzan LM (2006) Printing gold nanoparticles with an electrohydrodynamic direct write device. Gold Bull 39:48–53

    Article  Google Scholar 

  73. Schrefler BA (1985) A partitioned solution procedure for geothermal reservoir analysis. Commun Appl Numer Methods 1:53–56

    Article  MATH  Google Scholar 

  74. Sevostianov I, Kachanov M (2000) Modeling of the anisotropic elastic properties of plasma-sprayed coatings in relation to their microstructure. Acta Mater 48(6):1361–1370

    Article  Google Scholar 

  75. Sevostianov I, Kachanov M (2001) Thermal conductivity of plasma sprayed coatings in relation to their microstructure. J Therm Spray Technol 9(4):478–482

    Article  Google Scholar 

  76. Sevostianov I, Kachanov M (2001) Plasma-sprayed ceramic coatings: anisotropic elastic and conductive properties in relation to the microstructure; cross-property correlations. Mater Sci Eng A 297:235–243

    Article  Google Scholar 

  77. Sevostianov I, Gorbatikh L, Kachanov M (2001) Recovery of information of porous/microcracked materials from the effective elastic/conductive properties. Mater Sci Eng A 318:1–14

    Article  Google Scholar 

  78. Sevostianov I, Kachanov M (2008) Connections between elastic and conductive properties of heterogeneous materials. Adv Appl Mech 42:69–253

    Article  Google Scholar 

  79. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Article  Google Scholar 

  80. Tatzel H (1996) Grundlagen der Verarbeitungstechnik von EPP-Bewährte und neue Verfahren. Technical report of the BASF Company

  81. Torquato S (2002) Random heterogeneous materials: microstructure & macroscopic properties. Springer, New York

    Book  MATH  Google Scholar 

  82. Turska E, Schrefler BA (1994) On consistency, stability and convergence of staggered solution procedures. Rend Mat acc Lincei Rome S 9(5):265–271

    MathSciNet  MATH  Google Scholar 

  83. Wang X, Schrefler BA (1998) A multifrontal parallel algorithm for coupled thermo-hydro-mechanical analysis of deforming porous media. Int J Numer Methods Eng 43(1069):1083

    MATH  Google Scholar 

  84. Wang JZ, Zheng ZH, Li HW, Huck WTS, Sirringhaus H (2004) Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat Mater 3:171–176

    Article  Google Scholar 

  85. Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44:3888–3894

    Article  Google Scholar 

  86. Young DM (1950) Iterative methods for solving partial difference equations of elliptic type. Doctoral thesis. Harvard University

  87. Zienkiewicz OC (1984) Coupled problems & their numerical solution. In: Lewis RW, Bettes P, Hinton E (eds) Numerical methods in coupled systems. Wiley, Chichester, pp 35–58

    Google Scholar 

  88. Zienkiewicz OC, Paul DK, Chan AHC (1988) Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int J Numer Methods Eng 26:1039–1055

    Article  MATH  Google Scholar 

  89. Zohdi TI (2002) An adaptive-recursive staggering strategy for simulating multifield coupled processes in microheterogeneous solids. Int J Numer Methods Eng 53:1511–1532

    Article  MathSciNet  MATH  Google Scholar 

  90. Zohdi TI (2003) Genetic design of solids possessing a random-particulate microstructure. Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043

    Article  MathSciNet  MATH  Google Scholar 

  91. Zohdi TI (2004) Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput Methods Appl Mech Eng 193(6–8):679–699

    Article  MATH  Google Scholar 

  92. Zohdi TI (2007) Computation of strongly coupled multifield interaction in particle-fluid systems. Comput Methods Appl Mech Eng 196:3927–3950

    Article  MathSciNet  MATH  Google Scholar 

  93. Zohdi TI (2008) On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int J Numer Methods Eng 76:1250–1279

    Article  MathSciNet  MATH  Google Scholar 

  94. Zohdi TI (2010) Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput Methods Appl Mech Eng 199:79–101

    Article  MathSciNet  MATH  Google Scholar 

  95. Zohdi TI (2013) Rapid simulation of laser processing of discrete particulate materials. Arch Comput Methods Eng 1–17. doi:10.1007/s11831-013-9092-6

  96. Zohdi TI (2014) A computational modeling framework for heat transfer processes in laser-induced dermal tissue removal. Comput Mech Eng Sci 98(3):261–277

    MathSciNet  Google Scholar 

  97. Zohdi TI (2014) Additive particle deposition and selective laser processing–a computational manufacturing framework. Comput Mech 54:171–191

    Article  MATH  Google Scholar 

  98. Zohdi TI (2015) Rapid computation of statistically-stable particle/feature ratios for consistent substrate stresses in printed flexible electronics. J Manuf Sci Eng ASME. MANU-14-1476. doi:10.1115/1.4029327

  99. Zohdi TI (2015) On the thermal response of a laser-irradiated powder particle in additive manufacturing. CIRP J Manuf Sci Technol 10:77–83

    Article  Google Scholar 

  100. Zohdi TI (2015) Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput Mech 56:613–630

    Article  MathSciNet  MATH  Google Scholar 

  101. Zohdi TI, Wriggers P (2008) Introduction to computational micromechanics. Springer, Berlin Second Reprinting

    MATH  Google Scholar 

  102. Zohdi TI (2007) Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia

    Book  MATH  Google Scholar 

  103. Zohdi TI (2012) Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Army Research Laboratory through the Army High Performance Computing Research Center (cooperative agreement W911NF-07-2-0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Zohdi.

Appendices

Appendix 1: Spatial Finite Difference Stencils

Following Zohdi [89103], standard approximations are used:

  1. 1.

    For the first derivative of a primal variable u at \((x_1,x_2,x_3)\):

    $$\begin{aligned} \frac{\partial u}{\partial x_1}\approx \frac{u(x_1+\Delta x_1,x_2,x_3)-u(x_1-\Delta x_1,x_2,x_3)}{2\Delta x_1} \end{aligned}$$
    (6.1)
  2. 2.

    For the derivative of a flux at \((x_1,x_2,x_3)\), with an arbitrary material coefficient a:

    $$\begin{aligned} \frac{\partial }{\partial x_1} \left( a\frac{\partial u}{\partial x_1}\right)\approx &{} \frac{\left( a\frac{\partial u}{\partial x_1}\right) |_{x_1+\frac{\Delta x_1}{2},x_2,x_3} -\left( a\frac{\partial u}{\partial x_1}\right) |_{x_1-\frac{\Delta x_1}{2},x_2,x_3}}{\Delta x_1}\nonumber \\= &{} \frac{1}{\Delta x_1}\left[ a(x_1+\frac{\Delta x_1}{2},x_2,x_3)\left( \frac{u(x_1+\Delta x_1,x_2,x_3)-u(x_1,x_2,x_3)}{\Delta x_1}\right) \right] \nonumber \\&-\frac{1}{\Delta x_1}\left[ a(x_1-\frac{\Delta x_1}{2},x_2,x_3)\left( \frac{u(x_1,x_2,x_3)-u(x_1-\Delta x_1,x_2,x_3)}{\Delta x_1}\right) \right] , \end{aligned}$$
    (6.2)

    where we have used

    $$\begin{aligned} a(x_1+\frac{\Delta x_1}{2},x_2,x_3)\approx \frac{1}{2}\left( a(x_1+\Delta x_1,x_2,x_3)+a(x_1,x_2,x_3)\right) \end{aligned}$$
    (6.3)

    and

    $$\begin{aligned} a(x_1-\frac{\Delta x_1}{2},x_2,x_3)\approx \frac{1}{2}\left( a(x_1,x_2,x_3)+a(x_1-\Delta x_1,x_2,x_3)\right) \end{aligned}$$
    (6.4)
  3. 3.

    For the cross-derivative of a flux at \((x_1,x_2)\):

    $$\begin{aligned} \frac{\partial }{\partial x_2} \left( a\frac{\partial u}{\partial x_1}\right)\approx &{} \frac{\partial }{\partial x_2} \left( a(x_1,x_2,x_3)\left( \frac{u(x_1+\Delta x_1,x_2,x_3)-u(x_1-\Delta x_1,x_2,x_3)}{2\Delta x_1}\right) \right) \nonumber \\\approx &{} \frac{1}{4\Delta x_1\Delta x_2}( a(x_1,x_2+\Delta x_2,x_3)\left[ u(x_1+\Delta x_1,x_2+\Delta x_2,x_3)-u(x_1-\Delta x_1,x_2+\Delta x_2,x_3)\right] \nonumber \\&- a(x_1,x_2-\Delta x_2,x_3)\left[ u(x_1+\Delta x_1,x_2-\Delta x_2,x_3)-u(x_1-\Delta x_1,x_2-\Delta x_2,x_3)\right] ), \end{aligned}$$
    (6.5)
Fig. 11
figure 11

Various Finite-difference stencils in “computational molecule” form (centered at \((x_i,x_j,x_k)\)), where: (1) TERM-I: \(a\frac{\partial u}{\partial x_i}\), (2) TERM-II:\(\frac{\partial }{\partial x_i} \left( a\frac{\partial u}{\partial x_i}\right) \) and (3) TERM-III:\(\frac{\partial }{\partial x_j} \left( a\frac{\partial u}{\partial x_i}\right) \), following Zohdi [89103]

Remark

To illustrate second-order accuracy, consider a Taylor series expansion for an arbitrary function u

$$\begin{aligned} u(x+\Delta x)=u(x)+ \frac{\partial u}{\partial x}|_{x}\Delta x+ \frac{1}{2}\frac{\partial ^2u}{\partial x^2}|_{x}(\Delta x)^2 +\frac{1}{6}\frac{\partial ^3u}{\partial x^3}|_{x}(\Delta x)^3+{\mathcal{O}}((\Delta x)^4) \end{aligned}$$
(6.6)

and

$$\begin{aligned} u(x-\Delta x)=u(x)- \frac{\partial u}{\partial x}|_{x}\Delta x+ \frac{1}{2}\frac{\partial ^2u}{\partial x^2}|_{x}(\Delta x)^2 -\frac{1}{6}\frac{\partial ^3u}{\partial x^3}|_{x}(\Delta x)^3+{\mathcal{O}}((\Delta x)^4) \end{aligned}$$
(6.7)

Subtracting the two expressions yields

$$\begin{aligned} \frac{\partial u}{\partial x}|_{x} =\frac{u(x+\Delta x)-u(x-\Delta x)}{2\Delta x} +{\mathcal{O}}((\Delta x)^2). \end{aligned}$$
(6.8)

Appendix 2: Temporally-Adaptive Iterative Methods

Implicit time-stepping methods, with time step size adaptivity, built on approaches found in Zohdi [89103] were used throughout the analysis in the body of the work. In order to introduce basic concepts, we consider a first order differential equation for a field \({{\varvec{W}}}\):

$$\begin{aligned} \dot{{{\varvec{W}}}}=\varvec{\Lambda }({{\varvec{W}}}), \end{aligned}$$
(7.1)

which, after being discretized using a trapezoidal “\(\phi \)-method” (\(0\le \phi \le 1\))

$$\begin{aligned}{{\varvec{W}}}^{L+1}={{\varvec{W}}}^L+\Delta t \left( \phi \varvec{\Lambda }({{\varvec{W}}}^{L+1})+(1-\phi )\varvec{\Lambda }({{\varvec{W}}}^L)\right) . \end{aligned}$$
(7.2)

Generally, for systems of equations of this form, a straightforward iterative scheme can be written as

$$\begin{aligned}{{\varvec{W}}}^{L+1,K}={\mathcal{G}}({{\varvec{W}}}^{L+1,K-1})+{\mathcal{R}}, \end{aligned}$$
(7.3)

where \({\mathcal{R}}\) is a remainder term that does not depend on the solution, i.e. \({\mathcal{R}} \ne{\mathcal{R}}({{\varvec{W}}}^{L+1})\), and \(K=1, 2, 3, ...\) is the index of iteration within time step \(L+1\). The convergence of such a scheme is dependent on the behavior of \({\mathcal{G}}\). Namely, a sufficient condition for convergence is that \({\mathcal{G}}\) is a contraction mapping for all \({{\varvec{W}}}^{L+1,K}\), \(K=1, 2, 3...\) In order to investigate this further, we define the iteration error as

$$\begin{aligned} \varpi ^{L+1,K} \mathop{=}\limits ^{\mathrm{def}}||{{\varvec{W}}}^{L+1,K}-{{\varvec{W}}}^{L+1}||. \end{aligned}$$
(7.4)

A necessary restriction for convergence is iterative self consistency, i.e. the “exact” (discretized) solution must be represented by the scheme

$$\begin{aligned}{\mathcal{G}}({{\varvec{W}}}^{L+1})+{\mathcal{R}}={{\varvec{W}}}^{L+1}. \end{aligned}$$
(7.5)

Enforcing this restriction, a sufficient condition for convergence is the existence of a contraction mapping

$$\begin{aligned} \varpi ^{L+1,K}=||{{\varvec{W}}}^{L+1,K}-{{\varvec{W}}}^{L+1}||= &{} ||{\mathcal{G}} ({{\varvec{W}}}^{L+1,K-1})-{\mathcal{G}}({{\varvec{W}}}^{L+1})|| \end{aligned}$$
(7.6)
$$\begin{aligned}\le &{} \eta ^{L+1,K} ||{{\varvec{W}}}^{L+1,K-1}-{{\varvec{W}}}^{L+1}||, \end{aligned}$$
(7.7)

where, if \(0\le \eta ^{L+1,K}<1\) for each iteration K, then \(\varpi ^{L+1,K}\rightarrow 0\) for any arbitrary starting value \({{\varvec{W}}}^{L+1,K=0}\), as \(K \rightarrow \infty \). This type of contraction condition is sufficient, but not necessary, for convergence. Inserting these approximations into \(\dot{{{\varvec{W}}}}=\varvec{\Lambda }({{\varvec{W}}})\) leads to

$$\begin{aligned} \displaystyle{{{\varvec{W}}}^{L+1,K}\approx \underbrace{\Delta t\left( \phi \varvec{\Lambda }({{\varvec{W}}}^{L+1,K-1})\right) }_{{\mathcal{G}}({{\varvec{W}}}^{L+1,K-1})} +\underbrace{\Delta t(1-\phi )\varvec{\Lambda }({{\varvec{W}}}^L)+{{\varvec{W}}}^L}_{{\mathcal{R}}}}, \end{aligned}$$
(7.8)

whose contraction constant is scaled by \(\eta \propto \phi \Delta t\). Therefore, if convergence is slow within a time step, the time step size, which is adjustable, can be reduced by an appropriate amount to increase the rate of convergence. Decreasing the time step size improves the convergence, however, we want to simultaneously maximize the time-step sizes to decrease overall computing time, while still meeting an error tolerance on the numerical solution’s accuracy. In order to achieve this goal, we follow an approach found in Zohdi [89103] originally developed for continuum thermo-chemical multifield problems in which one first approximates

$$\begin{aligned} \eta ^{L+1,K} \approx S(\Delta t)^p \end{aligned}$$
(7.9)

(S is a constant) and secondly one assumes the error within an iteration to behave according to

$$\begin{aligned} (S (\Delta t)^p)^K\varpi ^{L+1,0}=\varpi ^{L+1,K}, \end{aligned}$$
(7.10)

\(K=1, 2,\ldots \), where \(\varpi ^{L+1,0}\) is the initial norm of the iterative error and S is intrinsic to the system.Footnote 7 Our goal is to meet an error tolerance in exactly a preset number of iterations. To this end, one writes

$$\begin{aligned} (S (\Delta t_{\mathrm{tol}})^p)^{K_{d}}\varpi ^{L+1,0}=C_{tol}, \end{aligned}$$
(7.11)

where \(C_{tol}\) is a (coupling) tolerance and where \(K_{d}\) is the number of desired iterations.Footnote 8 If the error tolerance is not met in the desired number of iterations, the contraction constant \(\eta ^{L+1,K}\) is too large. Accordingly, one can solve for a new smaller step size, under the assumption that S is constant,

$$\begin{aligned} \begin{array}{l} \displaystyle{\Delta t_{\mathrm{tol}} =\Delta t \left( \frac{(\frac{C_{tol}}{\varpi ^{L+1,0}})^{\frac{1}{pK_{d}}}}{(\frac{\varpi ^{L+1,K}}{\varpi ^{L+1,0}})^{\frac{1}{pK}}}\right) .} \end{array} \end{aligned}$$
(7.12)

The assumption that S is constant is not critical, since the time steps are to be recursively refined and unrefined throughout the simulation. Clearly, the expression in Eq. 7.12 can also be used for time step enlargement, if convergence is met in less than \(K_d\) iterations.Footnote 9

Appendix 3: Second-Order Temporal Discretization

Following Zohdi [89103], discretization of temporally second-order equations can be illustrated by considering

$$\begin{aligned} \ddot{{{\varvec{U}}}}=\dot{{{\varvec{V}}}}=\varvec{\Psi }({{\varvec{U}}}). \end{aligned}$$
(8.1)

Expanding the field \({{\varvec{V}}}\) in a Taylor series about \(t+\phi \Delta t\) we obtain

$$\begin{aligned}{{\varvec{V}}}(t+\Delta t)={{\varvec{V}}}(t+\phi \Delta t)+ \frac{d{{\varvec{V}}}}{d t}|_{t+\phi \Delta t}(1-\phi )\Delta t+ \frac{1}{2} \frac{d ^2{{\varvec{V}}}}{d t^2}|_{t+\phi \Delta t}(1-\phi )^2(\Delta t)^2+{\mathcal{O}}((\Delta t)^3) \end{aligned}$$
(8.2)

and

$$\begin{aligned}{{\varvec{V}}}(t)={{\varvec{V}}}(t+\phi \Delta t) -\frac{d{{\varvec{V}}}}{d t}|_{t+\phi \Delta t}\phi \Delta t+ \frac{1}{2} \frac{d ^2{{\varvec{V}}}}{d t^2}|_{t+\phi \Delta t}\phi ^2(\Delta t)^2+{\mathcal{O}}((\Delta t)^3) \end{aligned}$$
(8.3)

Subtracting the two expressions yields

$$\begin{aligned} \frac{d{{\varvec{V}}}}{d t}|_{t+\phi \Delta t} =\frac{{{\varvec{V}}}(t+\Delta t)-{{\varvec{V}}}(t)}{\Delta t}+\hat{{\mathcal{O}}}(\Delta t), \end{aligned}$$
(8.4)

where \(\hat{{\mathcal{O}}}(\Delta t)={\mathcal{O}}((\Delta t)^2)\), when \(\phi =\frac{1}{2}\). Thus, inserting this into the governing equation yields

$$\begin{aligned}{{\varvec{V}}}(t+\Delta t)={{\varvec{V}}}(t)+\Delta t\varvec{\Psi }(t+\phi \Delta t)+\hat{{\mathcal{O}}}((\Delta t)^2). \end{aligned}$$
(8.5)

Note that adding a weighted sum of Eqs. 8.2 and 8.3 yields

$$\begin{aligned}{{\varvec{V}}}(t+\phi \Delta t)=\phi{{\varvec{V}}}(t+\Delta t)+(1-\phi ){{\varvec{V}}}(t) +{\mathcal{O}}((\Delta t)^2), \end{aligned}$$
(8.6)

which will be useful shortly. Now expanding the field \({{\varvec{U}}}\) in a Taylor series about \(t+\phi \Delta t\) we obtain

$$\begin{aligned}{{\varvec{U}}}(t+\Delta t)={{\varvec{U}}}(t+\phi \Delta t)+ \frac{d{{\varvec{U}}}}{d t}|_{t+\phi \Delta t}(1-\phi )\Delta t+ \frac{1}{2} \frac{d ^2{{\varvec{U}}}}{d t^2}|_{t+\phi \Delta t}(1-\phi )^2(\Delta t)^2+{\mathcal{O}}((\Delta t)^3) \end{aligned}$$
(8.7)

and

$$\begin{aligned}{{\varvec{U}}}(t)={{\varvec{U}}}(t+\phi \Delta t) -\frac{d{{\varvec{U}}}}{d t}|_{t+\phi \Delta t}\phi \Delta t+ \frac{1}{2} \frac{d ^2{{\varvec{U}}}}{d t^2}|_{t+\phi \Delta t}\phi ^2(\Delta t)^2+{\mathcal{O}}((\Delta t)^3). \end{aligned}$$
(8.8)

Subtracting the two expressions yields

$$\begin{aligned} \frac{{{\varvec{U}}}(t+\Delta t)-{{\varvec{U}}}(t)}{\Delta t}={{\varvec{V}}}(t+\phi \Delta t)+\hat{\mathcal{O}}(\Delta t). \end{aligned}$$
(8.9)

Inserting Eq. 8.6 yields

$$\begin{aligned}{{\varvec{U}}}(t+\Delta t)={{\varvec{U}}}(t)+\left( \phi{{\varvec{V}}}(t+\Delta t)+(1-\phi ){{\varvec{V}}}(t)\right) \Delta t +\hat{\mathcal{O}}((\Delta t)^2). \end{aligned}$$
(8.10)

and thus using Eq. 8.5 yields

$$\begin{aligned}{{\varvec{U}}}(t+\Delta t)={{\varvec{U}}}(t)+{{\varvec{V}}}(t)\Delta t+\phi (\Delta t)^2\varvec{\Psi }({{\varvec{U}}}(t+\phi \Delta t))+\hat{\mathcal{O}}((\Delta t)^2). \end{aligned}$$
(8.11)

The term \(\varvec{\Psi }({{\varvec{U}}}(t+\phi \Delta t))\) can be handled in two main ways:

  • \(\varvec{\Psi }(t+\phi \Delta t)\approx \varvec{\Psi }(\phi{{\varvec{U}}}(t+\Delta t)+(1-\phi ){{\varvec{U}}}(t))\) or

  • \(\varvec{\Psi }(t+\phi \Delta t)\approx \phi \varvec{\Psi }({{\varvec{U}}}(t+\Delta t))+(1-\phi )\varvec{\Psi }({{\varvec{U}}}(t))\).

The differences are quite minute between either of the above, thus, for brevity, we choose the latter. In summary, we have the following:

$$\begin{aligned}{{\varvec{U}}}(t+\Delta t)={{\varvec{U}}}(t)+{{\varvec{V}}}(t)\Delta t+\phi (\Delta t)^2\left( \phi \varvec{\Psi }({{\varvec{U}}}(t+\Delta t))+(1-\phi )\varvec{\Psi }({{\varvec{U}}}(t))\right) +\hat{\mathcal{O}}((\Delta t)^2). \end{aligned}$$
(8.12)

We note that

  • When \(\phi =1\), then this is the (implicit) Backward Euler scheme, which is very stable (very dissipative) and \({\mathcal{O}}((\Delta t)^2)\) locally in time,

  • When \(\phi =0\), then this is the (explicit) Forward Euler scheme, which is conditionally stable and \({\mathcal{O}}((\Delta t)^2)\) locally in time,

  • When \(\phi =0.5\), then this is the (implicit) “Midpoint” scheme, which is stable and \(\hat{\mathcal{O}}((\Delta t)^2)={\mathcal{O}}((\Delta t)^3)\) locally in time.

In summary, we have for the velocityFootnote 10

$$\begin{aligned}{{\varvec{V}}}(t+\Delta t)={{\varvec{V}}}(t)+\Delta t \left( \phi \varvec{\Psi }({{\varvec{U}}}(t+\Delta t)) +(1-\phi )\varvec{\Psi }({{\varvec{U}}}(t))\right) \end{aligned}$$
(8.13)

and for the position

$$\begin{aligned}{{\varvec{U}}}(t+\Delta t)&{}={{\varvec{U}}}(t)+{{\varvec{V}}}(t+\phi \Delta t)\Delta t \nonumber \\= &{}{{\varvec{U}}}(t)+\left( \phi{{\varvec{V}}}(t+\Delta t)+(1-\phi ){{\varvec{V}}}(t)\right) \Delta t, \end{aligned}$$
(8.14)

or more explicitly

$$\begin{aligned}{{\varvec{U}}}(t+\Delta t)={{\varvec{U}}}(t)+{{\varvec{V}}}(t)\Delta t +\phi (\Delta t)^2 \left( \phi \varvec{\Psi }({{\varvec{U}}}(t+\Delta t))+(1-\phi )\varvec{\Psi }({{\varvec{U}}}(t))\right) . \end{aligned}$$
(8.15)

In iterative (recursion) form

$$\begin{aligned}{{\varvec{U}}}^{L+1,K}=\underbrace{(\phi \Delta t)^2\varvec{\Psi }({{\varvec{U}}}^{L+1,K-1})}_{{\mathcal{G}}({{\varvec{U}}}^{L+1,K-1})}+ \underbrace{{{\varvec{U}}}^L+{{\varvec{V}}}^L\Delta t+(\Delta t)^2\phi (1-\phi )\varvec{\Psi }({{\varvec{U}}}^L)}_{{\mathcal{R}}} \end{aligned}$$
(8.16)

Remark

Applying this scheme to the balance of linear momentum continuum formulation, under infinitesimal deformations, \(\nabla _X \cdot \varvec{\sigma }+{{\varvec{f}}}=\rho \frac{\partial ^2{{\varvec{u}}}}{\partial t^2}\) we use \(\varvec{\Psi }({{\varvec{u}}}(t))=\frac{\nabla _X\cdot \varvec{\sigma }+{{\varvec{f}}}}{\rho }\), and must apply the (iterative) process introduced earlier to all nodes in the system.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zohdi, T.I. Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials. Arch Computat Methods Eng 24, 89–113 (2017). https://doi.org/10.1007/s11831-015-9160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9160-1

Navigation