Skip to main content
Log in

A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Various realizations of variational multiscale (VMS) methods for simulating turbulent incompressible flows have been proposed in the past fifteen years. All of these realizations obey the basic principles of VMS methods: they are based on the variation al formulation of the incompressible Navier–Stokes equations and the scale separation is defined by projections. However, apart from these common basic features, the various VMS methods look quite different. In this review, the derivation of the different VMS methods is presented in some detail and their relation among each other and also to other discretizations is discussed. Another emphasis consists in giving an overview about known results from the numerical analysis of the VMS methods. A few results are presented in detail to highlight the used math ematical tools. Furthermore, the literature presenting numerical studies with the VMS methods is surveyed and the obtained results are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed N, Chacón Rebollo T, John V, Rubino S (2015) Analysis of a full space–time discretization of the Navier–Stokes equations by a local projection stabilization method. IMA J Numer Anal (Submitted)

  2. Apel T, Knopp T, Lube G (2008) Stabilized finite element methods with anisotropic mesh refinement for the Oseen problem. Appl Numer Math 58(12):1830–1843

    Article  MathSciNet  MATH  Google Scholar 

  3. Arndt D, Dallmann H (2015) Error estimates for the fully discretized incompressible Navier–Stokes problem with LPS stabilization. Preprint 08, Institut für Numerische und Angewandte Mathematik, Göttingen

  4. Arndt D, Dallmann H, Lube G (2015) Local projection FEM stabilization for the time-dependent incompressible Navier–Stokes problem. Numer Methods Partial Diff. Equ 31(4):1224–1250

    Article  MathSciNet  MATH  Google Scholar 

  5. Arndt D, Dallmann H, Lube G (2015) Quasi-optimal error estimates for the stabilized incompressible Navier–Stokes problem discretized by finite element methods and pressure-correction projection. Math Model Numer Anal (Submitted)

  6. Arnold DN, Brezzi F, Fortin M (1985) A stable finite element for the Stokes equations. Calcolo 21(4):337–344 1984

    Article  MathSciNet  MATH  Google Scholar 

  7. Asensio MI, Russo A, Sangalli G (2004) The residual-free bubble numerical method with quadratic elements. Math Models Methods Appl Sci 14(5):641–661

    Article  MathSciNet  MATH  Google Scholar 

  8. Babuška I (1970/1971) Error-bounds for finite element method. Numer Math 16:322–333

  9. Bazilevs Y, Akkerman I (2010) Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual-based variational multiscale method. J Comput Phys 229(9):3402–3414

    Article  MathSciNet  MATH  Google Scholar 

  10. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Engrg 197(1–4):173–201

    Article  MathSciNet  MATH  Google Scholar 

  11. Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Engrg 199(13–16):780–790

    Article  MathSciNet  MATH  Google Scholar 

  12. Becker R, Braack M (2001) A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4):173–199

    Article  MathSciNet  MATH  Google Scholar 

  13. Becker R, Braack M (2004) A two-level stabilization scheme for the Navier–Stokes equations. In: Feistauer M (ed) Numerical mathematics and advanced applications. Springer, Berlin, pp 123–130

  14. Bensow RE, Larson MG (2010) Residual based VMS subgrid modeling for vortex flows. Comput Methods Appl Mech Engrg 199(13–16):802–809

    Article  MathSciNet  MATH  Google Scholar 

  15. Bensow RE, Larson MG, Vesterlund P (2007) Vorticity-strain residual-based turbulence modelling of the Taylor–Green vortex. Int J Numer Methods Fluids 54(6–8):745–756

    Article  MathSciNet  MATH  Google Scholar 

  16. Bernardi C, Maday Y, Rapetti F (2004) Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol 45. Springer, Berlin

    Google Scholar 

  17. Bernardi C, Raugel G (1985) Analysis of some finite elements for the Stokes problem. Math Comp 44(169):71–79

    Article  MathSciNet  MATH  Google Scholar 

  18. Berselli LC, Iliescu T, Layton WJ (2006) Mathematics of large eddy simulation of turbulent flows. Scientific computation. Springer, Berlin

    MATH  Google Scholar 

  19. Bordás R, John V, Schmeyer E, Thévenin D (2012) Measurement and simulation of a droplet population in a turbulent flow field. Comput Fluids 66:52–62

    Article  Google Scholar 

  20. Bordás R, John V, Schmeyer E, Thévenin D (2013) Numerical methods for the simulation of a coalescence-driven droplet size distribution. Theoret Comput Fluid Dyn 27(3–4):253–271

    Article  Google Scholar 

  21. Boris JP, Grinstein FF, Oran ES, Kolbe RL (1992) New insights into large eddy simulation. Fluid Dyn Res 10(4–6):199–228

    Article  Google Scholar 

  22. Braack M, Burman E, John V, Lube G (2007) Stabilized finite element methods for the generalized Oseen problem. Comput Methods Appl Mech Engrg 196(4–6):853–866

    Article  MathSciNet  MATH  Google Scholar 

  23. Brachet ME, Meiron D, Orszag S, Nickel B, Morf R, Frisch U (1984) The Taylor–Green vortex and fully developed turbulence. J Statist Phys 34(5–6):1049–1063

    Article  MathSciNet  Google Scholar 

  24. Brezzi F (1974) On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev Française Automat Informat Recherche Opérationnelle Sér Rouge 8(R–2):129–151

    MathSciNet  MATH  Google Scholar 

  25. Brezzi F, Hughes TJR, Marini LD, Russo A, Süli E (1999) A priori error analysis of residual-free bubbles for advection–diffusion problems. SIAM J Numer Anal 36(6):1933–1948

    Article  MathSciNet  MATH  Google Scholar 

  26. Brezzi F, Marini D, Süli E (2000) Residual-free bubbles for advection–diffusion problems: the general error analysis. Numer Math 85(1):31–47

    Article  MathSciNet  MATH  Google Scholar 

  27. Brezzi F, Russo A (1994) Choosing bubbles for advection–diffusion problems. Math Models Methods Appl Sci 4(4):571–587

    Article  MathSciNet  MATH  Google Scholar 

  28. Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 32(1–3):199–259 (FENOMECH ’81, Part I (Stuttgart, 1981))

    Article  MathSciNet  MATH  Google Scholar 

  29. Burton GC, Dahm WJA (2005) Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing. Phys Fluids 17(7):075111–075116

    Article  MathSciNet  MATH  Google Scholar 

  30. Burton GC, Dahm WJA (2005) Multifractal subgrid-scale modeling for large-Eddy simulation. II. Backscatter limiting and a posteriori evaluation. Phys Fluids 17(7):075112–075119

    Article  MathSciNet  MATH  Google Scholar 

  31. Calderer R, Masud A (2013) Residual-based variational multiscale turbulence models for unstructured tetrahedral meshes. Comput Methods Appl Mech Engrg 254:238–253

    Article  MathSciNet  MATH  Google Scholar 

  32. Chacón Rebollo T (1998) A term by term stabilization algorithm for finite element solution of incompressible flow problems. Numer Math 79(2):283–319

    Article  MathSciNet  MATH  Google Scholar 

  33. Chacón Rebollo T (2001) An analysis technique for stabilized finite element solution of incompressible flows. Math Model Numer Anal 35(1):57–89

    Article  MathSciNet  MATH  Google Scholar 

  34. Chacón Rebollo T, Gómez Mármol M, Girault V, Sánchez Muñoz I (2013) A high order term-by-term stabilization solver for incompressible flow problems. IMA J Numer Anal 33(3):974–1007

    Article  MathSciNet  MATH  Google Scholar 

  35. Chacón Rebollo T, Gómez Mármol M, Rubino S (2015) Finite element approximation of an unsteady projection-based VMS turbulence model with wall laws. To appear in BAIL 2014 Proc.: Springer Series Lecture Notes in Computational Science and Engineering

  36. Chacón Rebollo T, Gómez Mármol M, Rubino S (2015) Numerical analysis of a finite element projection-based VMS turbulence model with wall laws. Comput Methods Appl Mech Engrg 285:379–405

    Article  MathSciNet  Google Scholar 

  37. Chacón Rebollo T, Gómez Mármol M, Sánchez Muñoz I (2012) Numerical solution of the primitive equations of the ocean by the orthogonal sub-scales VMS method. Appl Numer Math 62(4):342–359

    Article  MathSciNet  MATH  Google Scholar 

  38. Chacón Rebollo T, Lewandowski R (2014) Mathematical and numerical foundations of turbulence models and applications. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  39. Chacón Rebollo T, Dia BM (2015) A variational multi-scale method with spectral approximation of the sub-scales: application to the 1D advection-diffusion equations. Comput Methods Appl Mech Engrg 285:406–426

    Article  MathSciNet  Google Scholar 

  40. Ciarlet PG (1978) The finite element method for elliptic problems. Studies in mathematics and its applications, vol 4. North-Holland, Amsterdam

    Google Scholar 

  41. Codina R (1998) Comparison of some finite element methods for solving the diffusion–convection–reaction equation. Comput Methods Appl Mech Engrg 156(1–4):185–210

    Article  MathSciNet  MATH  Google Scholar 

  42. Codina R (2000) Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput Methods Appl Mech Engrg 190(13–14):1579–1599

    Article  MathSciNet  MATH  Google Scholar 

  43. Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Engrg 190(20–21):2681–2706

    Article  MathSciNet  MATH  Google Scholar 

  44. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Methods Appl Mech Engrg 191(39–40):4295–4321

    Article  MathSciNet  MATH  Google Scholar 

  45. Codina R (2008) Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl Numer Math 58(3):264–283

    Article  MathSciNet  MATH  Google Scholar 

  46. Codina R, Blasco J (2002) Analysis of a stabilized finite element approximation of the transient convection–diffusion–reaction equation using orthogonal subscales. Comput Vis Sci 4(3):167–174

    Article  MathSciNet  MATH  Google Scholar 

  47. Codina R, Principe J, Badia S (2011) Dissipative structure and long term behaviorof a finite element approximation of incompressible flows with numerical subgrid scalemodeling. In: Multiscale methods in computational mechanics, volume 55 of Lect. Notes Appl Comput Mech. Springer, pp 75-93

  48. Codina R, Principe J, Guasch O, Badia S (2007) Time dependent subscales in the stabilized finite element approximation of incompressible flow problems. Comput Methods Appl Mech Engrg 196(21–24):2413–2430

    Article  MathSciNet  MATH  Google Scholar 

  49. Colomés O, Badia S, Codina R, Principe J (2015) Assessment of variational multiscale models for the large Eddy simulation of turbulent incompressible flows. Comput Methods Appl Mech Engrg 285:32–63

    Article  MathSciNet  Google Scholar 

  50. de Frutos J, García Archilla B, John V, Nov o J (2015) Grad-div stabilization for the evolutionary oseen problem with inf-sup stable finite elements. J Sci Comput 1–34. doi:10.1007/s10915-015-0052-1

  51. Dunca A, John V, Layton WJ (2004) The commutation error of the space averaged Navier–Stokes equations on a bounded domain. In: Contributions to current challenges in mathematical fluid mechanics. Adv Math Fluid Mech. Birkhäuser, Basel, pp 53–78

  52. Fauconnier D, De Langhe C, Dick E (2009) Construction of explicit and implicit dynamic finite difference schemes and application to the large-eddy simulation of the Taylor–Green vortex. J Comput Phys 228(21):8053–8084

    Article  MathSciNet  MATH  Google Scholar 

  53. Franca LP, Frey SL (1992) Stabilized finite element methods. II. The incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 99(2–3):209–233

    Article  MathSciNet  MATH  Google Scholar 

  54. Franca LP, Hughes TJR (1988) Two classes of mixed finite element methods. Comput Methods Appl Mech Engrg 69(1):89–129

    Article  MathSciNet  MATH  Google Scholar 

  55. Franca LP, John V, Matthies G, Tobiska L (2007) An inf-sup stable and residual-free bubble element for the Oseen equations. SIAM J Numer Anal 45(6):2392–2407 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  56. Franca LP, Valentin F (2000) On an improved unusual stabilized finite element method for the advective–reactive–diffusive equation. Comput Methods Appl Mech Engrg 190(13–14):1785–1800

    Article  MathSciNet  MATH  Google Scholar 

  57. Franca LP, Nesliturk A (2001) On a two-level finite element method for the incompressible Navier–Stokes equations. Int J Numer Methods Eng 52(4):433–453

    Article  MATH  Google Scholar 

  58. Galdi GP (2000) An introduction to the Navier–Stokes initial-boundary value problem. In: Fundamental directions in mathematical fluid mechanics. Adv Math Fluid Mech. Birkhäuser, Basel, pp 1–70

  59. Gamnitzer P, Gravemeier V, Wall WA (2010) Time-dependent subgrid scales in residual-based large eddy simulation of turbulent channel flow. Comput Methods Appl Mech Engrg 199(13–16):819–827

    Article  MathSciNet  MATH  Google Scholar 

  60. Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgridscale eddy viscosity model. Phys Fluids A 3(7):1760–1765

    Article  MATH  Google Scholar 

  61. Girault V, Lions J-L (2001) Two-grid finite-element schemes for the transient Navier–Stokes problem. Math Model Numer Anal 35(5):945–980

    Article  MathSciNet  MATH  Google Scholar 

  62. Gravemeier V (2006) The variational multiscale method for laminar and turbulent flow. Arch Comput Methods Engrg 13(2):249–324

    Article  MathSciNet  MATH  Google Scholar 

  63. Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An algebraic variational multiscale-multigrid method for large eddy simulation of turbulent flow. Comput Methods Appl Mech Engrg 199(13–16):853–864

    Article  MathSciNet  MATH  Google Scholar 

  64. Gravemeier V, Gee MW, Wall WA (2009) An algebraic variational multiscale-multigrid method based on plain aggregation for convection–diffusion problems. Comput Methods Appl Mech Engrg 198(47–48):3821–3835

    Article  MathSciNet  MATH  Google Scholar 

  65. Gravemeier V, Kronbichler M, Gee MW, Wall WA (2011) An algebraic variational multiscale–multigrid method for large-eddy simulation: generalized-\(\alpha\) time integration, Fourier analysis and application to turbulent flow past a square-section cylinder. Comput Mech 47(2):217–233

    Article  MathSciNet  MATH  Google Scholar 

  66. Gravemeier V, Wall WA (2010) An algebraic variational multiscale–multigrid method for large-eddy simulation of turbulent variable-density flow at low Mach number. J Comput Phys 229(17):6047–6070

    Article  MathSciNet  MATH  Google Scholar 

  67. Gravemeier V, Wall WA (2011) Residual-based variational multiscale methods for laminar, transitional and turbulent variable-density flow at low Mach number. Int J Numer Methods Fluids 65(10):1260–1278

    Article  MathSciNet  MATH  Google Scholar 

  68. Gravemeier V, Wall WA, Ramm E (2004) A three-level finite element method for the instationary incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 193(15–16):1323–1366

    Article  MathSciNet  MATH  Google Scholar 

  69. Gravemeier V, Wall WA, Ramm E (2005) Large eddy simulation of turbulent incompressible flows by a three-level finite element method. Int J Numer Methods Fluids 48(10):1067–1099

    Article  MathSciNet  MATH  Google Scholar 

  70. Guasch O, Codina R (2013) Statistical behavior of the orthogonal subgrid scale stabilization terms in the finite element large eddy simulation of turbulent flows. Comput Methods Appl Mech Engrg 261(262):154–166

    Article  MathSciNet  MATH  Google Scholar 

  71. Guermond J-L (1999) Stabilization of Galerkin approximations of transport equations by subgrid modeling. Math Model Numer Anal 33(6):1293–1316

    Article  MathSciNet  MATH  Google Scholar 

  72. Hansbo P, Szepessy A (1990) A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations. Comput Methods Appl Mech Engrg 84(2):175–192

    Article  MathSciNet  MATH  Google Scholar 

  73. He L, Tobiska L (2012) The two-level local projection stabilization as an enriched one-level approach. Adv Comput Math 36(4):503–523

    Article  MathSciNet  MATH  Google Scholar 

  74. Heywood JG, Rannacher R (1982) Finite element approximation of the nonstationary Navier–Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization. SIAM J Numer Anal 19(2):275–311

    Article  MathSciNet  MATH  Google Scholar 

  75. Heywood JG, Rannacher R (1988) Finite element approximation of the nonstationary Navier–Stokes problem. III. Smoothing property and higher order error estimates for spatial discretization. SIAM J Numer Anal 25(3):489–512

    Article  MathSciNet  MATH  Google Scholar 

  76. Hickel S, Adams NA, Domaradzki JA (2006) An adaptive local deconvolution method for implicit LES. J Comput Phys 213(1):413–436

    Article  MathSciNet  MATH  Google Scholar 

  77. Hood P, Taylor C (1974) Navier–Stokes equations using mixed interpolation. In: Oden JT, Gallagher RH, Zienkiewicz OC, Taylor C (eds) Finite element methods in flow problems. University of Alabama, Huntsville Press, Huntsville, pp 121–132

    Google Scholar 

  78. Hopf E (1951) Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math Nachr 4:213–231

    Article  MathSciNet  MATH  Google Scholar 

  79. Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Engrg 199(13–16):828–840

    Article  MathSciNet  MATH  Google Scholar 

  80. Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Engrg 127(1–4):387–401

    Article  MathSciNet  MATH  Google Scholar 

  81. Hughes TJR, Brooks A (1979) A multidimensional upwind scheme with no crosswind diffusion. In: Finite element methods for convection dominated flows (Papers, Winter Ann. Meeting Amer. Soc. Mech. Engrs., New York, 1979), volume 34 of AMD, pages 19–35. Amer. Soc. Mech. Engrs. (ASME), New York

  82. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Engrg 194(39–41):4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  83. Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Engrg 166(1–2):3–24

    Article  MathSciNet  MATH  Google Scholar 

  84. Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Engrg 59(1):85–99

    Article  MathSciNet  MATH  Google Scholar 

  85. Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3(1–2):47–59

    Article  MATH  Google Scholar 

  86. Hughes TJR, Mazzei L, Oberai AA, Wray AA (2001) The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence. Phys Fluids 13(2):505–512

    Article  MATH  Google Scholar 

  87. Hughes TJR, Oberai AA, Mazzei L (2001) Large eddy simulation of turbulent channel flows by the variational multiscale method. Phys Fluids 13(6):1784–1799

    Article  MATH  Google Scholar 

  88. Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45(2):539–557

    Article  MathSciNet  MATH  Google Scholar 

  89. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods, chap 2. Wiley, London

    Google Scholar 

  90. Jenkins EW, John V, Linke A, Rebholz LG (2014) On the parameter choice in grad-div stabilization for the Stokes equations. Adv Comput Math 40(2):491–516

    Article  MathSciNet  MATH  Google Scholar 

  91. John V (2004) Large eddy simulation of turbulent incompressible flows, volume 34 of lecture notes in computational science and engineering. Analytical and numerical results for a class of LES models. Springer, Berlin

  92. John V (2006) On large eddy simulation and variational multiscale methods in the numerical simulation of turbulent incompressible flows. Appl Math 51(4):321–353

    Article  MathSciNet  MATH  Google Scholar 

  93. John V, Kaya S (2005) A finite element variational multiscale method for the Navier–Stokes equations. SIAM J Sci Comput 26(5):1485–1503 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  94. John V, Kaya S (2008) Finite element error analysis of a variational multiscale method for the Navier–Stokes equations. Adv Comput Math 28(1):43–61

    Article  MathSciNet  MATH  Google Scholar 

  95. John V, Kaya S, Kindl A (2008) Finite element error analysis for a projection-based variational multiscale method with nonlinear eddy viscosity. J Math Anal Appl 344(2):627–641

    Article  MathSciNet  MATH  Google Scholar 

  96. John V, Kaya S, Layton W (2006) A two-level variational multiscale method for convection-dominated convection–diffusion equations. Comput Methods Appl Mech Engrg 195(33–36):4594–4603

    Article  MathSciNet  MATH  Google Scholar 

  97. John V, Kindl A (2008) Variants of projection-based finite element variational multiscale methods for the simulation of turbulent flows. Int J Numer Methods Fluids 56(8):1321–1328

    Article  MathSciNet  MATH  Google Scholar 

  98. John V, Kindl A (2010) Numerical studies of finite element variational multiscale methods for turbulent flow simulations. Comput Methods Appl Mech Engrg 199(13–16):841–852

    Article  MathSciNet  MATH  Google Scholar 

  99. John V, Kindl A (2010) A variational multiscale method for turbulent flow simulation with adaptive large scale space. J Comput Phys 229(2):301–312

    Article  MathSciNet  MATH  Google Scholar 

  100. John V, Kindl A, Suciu C (2010) Finite element LES and VMS methods on tetrahedral meshes. J Comput Appl Math 233(12):3095–3102

    Article  MathSciNet  MATH  Google Scholar 

  101. John V, Layton WJ (2002) Analysis of numerical errors in large eddy simulation. SIAM J Numer Anal 40(3):995–1020

    Article  MathSciNet  MATH  Google Scholar 

  102. John V, Linke A, Merdon C, Neilan M, Rebholz LG (2015) On the divergence constraint in mixed finite element methods for incompressible flows. Preprint 2177, WIAS, Berlin

  103. John V, Novo J (2011) Error analysis of the SUPG finite element discretization of evolutionary convection–diffusion-reaction equations. SIAM J Numer Anal 49(3):1149–1176

    Article  MathSciNet  MATH  Google Scholar 

  104. John V, Roland M (2007) Simulations of the turbulent channel flow at \({\rm Re}_\tau =180\) with projection-based finite element variational multiscale methods. Int J Numer Methods Fluids 55(5):407–429

    Article  MathSciNet  MATH  Google Scholar 

  105. Layton W (2002) A connection between subgrid scale eddy viscosity and mixed methods. Appl Math Comput 133(1):147–157

    MathSciNet  MATH  Google Scholar 

  106. Layton W, Röhe L, Tran H (2011) Explicitly uncoupled VMS stabilization of fluid flow. Comput Methods Appl Mech Engrg 200(45–46):3183–3199

    Article  MathSciNet  MATH  Google Scholar 

  107. Leray J (1934) Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math 63(1):193–248

    Article  MathSciNet  Google Scholar 

  108. Lilly DK (1992) A proposed modification of the Germano subgrid-scale closure method. Phys Fluids A 4(3):633–635

    Article  MathSciNet  Google Scholar 

  109. Löwe J, Lube G (2012) A projection-based variational multiscale method for large-eddy simulation with application to non-isothermal free convection problems. Math Models Methods Appl Sci 22(2):1150011–1150031

    Article  MathSciNet  MATH  Google Scholar 

  110. Lube G, Rapin G (2006) Residual-based stabilized higher-order FEM for a generalized Oseen problem. Math Models Methods Appl Sci 16(7):949–966

    Article  MathSciNet  MATH  Google Scholar 

  111. Lube G, Tobiska L (1990) A nonconforming finite element method of streamline diffusion type for the incompressible Navier–Stokes equations. J Comput Math 8(2):147–158

    MathSciNet  MATH  Google Scholar 

  112. Masud A, Calderer R (2009) A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput Mech 44(2):145–160

    Article  MathSciNet  MATH  Google Scholar 

  113. Masud A, Calderer R (2011) A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput Methods Appl Mech Engrg 200(33–36):2577–2593

    Article  MathSciNet  MATH  Google Scholar 

  114. Matthies G, Lube G, Röhe L (2009) Some remarks on residual-based stabilisation of inf-sup stable discretisations of the generalised Oseen problem. Comput Methods Appl Math 9(4):368–390

    Article  MathSciNet  MATH  Google Scholar 

  115. Matthies G, Skrzypacz P, Tobiska L (2007) A unified convergence analysis for local projection stabilisations applied to the Oseen problem. Math Model Numer Anal 41(4):713–742

    Article  MathSciNet  MATH  Google Scholar 

  116. Moser R, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to \({R}e_{\tau }=590\). Phys Fluids 11(4):943–945

    Article  MATH  Google Scholar 

  117. Olshanskii MA, Reusken A (2004) Grad-div stabilization for Stokes equations. Math Comp 73(248):1699–1718

    Article  MathSciNet  MATH  Google Scholar 

  118. Principe J, Codina R, Henke F (2010) The dissipative structure of variational multiscale methods for incompressible flows. Comput Methods Appl Mech Engrg 199(13–16):791–801

    Article  MathSciNet  MATH  Google Scholar 

  119. Rasthofer U (2015) Computational multiscale methods for turbulent single and two-phase flows. Bericht 27, Lehrstuhl für Numerische Mechanik, Technische Universität München. PhD thesis

  120. Rasthofer U, Burton GC, Wall WA, Gravemeier V (2014) An algebraic variational multiscale–multigrid–multifractal method \(({\rm AVM}^4)\) for large-eddy simulation of turbulent variable-density flow at low Mach number. Int J Numer Methods Fluids 76(7):416–449

    Article  MathSciNet  Google Scholar 

  121. Rasthofer U, Gravemeier V (2013) Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow. J Comput Phys 234:79–107

    Article  MathSciNet  MATH  Google Scholar 

  122. Risch U (2001) Convergence analysis of the residual free bubble method for bilinear elements. SIAM J Numer Anal 39(4):1366–1379 (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  123. Röhe L, Lube G (2010) Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence. Comput Methods Appl Mech Engrg 199(37–40):2331–2342

    Article  MathSciNet  MATH  Google Scholar 

  124. Roos HG, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations, volume 24 of Springer series in computational mathematics. Convection–diffusion–reaction and flow problems, 2nd edn. Springer, Berlin

  125. Rubino S (2014) Numerical modeling of turbulence by Richardson number-based and VMS models. PhD thesis, University of Seville

  126. Sagaut P (2006) Large eddy simulation for incompressible flows. Scientific computation, 3rd edn. Springer, Berlin An introduction

    MATH  Google Scholar 

  127. Sala M, Tuminaro RS (2008) A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems. SIAM J Sci Comput 31(1):143–166

    Article  MathSciNet  MATH  Google Scholar 

  128. Schmeyer E, Bordás R, Thévenin D, John V (2014) Numerical simulations and measurements of a droplet size distribution in a turbulent vortex street. Meteorol Z 23(4):387–396

    Article  Google Scholar 

  129. Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math Comput 54(190):483–493

    Article  MathSciNet  MATH  Google Scholar 

  130. Serrin J (1963) The initial value problem for the Navier–Stokes equations. In: Nonlinear problems (proceedings of symposium, Madison, WI, 1962). University of Wisconsin Press, Madison, pp 69–98

  131. Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics. X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Engrg 89(1–3):141–219 (second world congress on computational mechanics, part I (Stuttgart, 1990))

    Article  MathSciNet  MATH  Google Scholar 

  132. Simon J (1987) Compact sets in the space \(L^p(0, T;B)\). Ann Mat Pura Appl 4(146):65–96

    MathSciNet  MATH  Google Scholar 

  133. Sohr H (1983) Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes. Math Z 184(3):359–375

    Article  MathSciNet  MATH  Google Scholar 

  134. Sohr H (2001) The Navier–Stokes equations. Birkhäuser advanced texts: Basler Lehrbücher. [Birkhäuser advanced texts: Basel Textbooks]. An elementary functional analytic approach. Birkhäuser Verlag, Basel

  135. Stüben K (2001) A review of algebraic multigrid. J Comput Appl Math 128(1–2):281–309 (Numerical analysis 2000, vol VII, partial differential equations)

    Article  MathSciNet  MATH  Google Scholar 

  136. Tobiska L, Lube G (1991) A modified streamline diffusion method for solving the stationary Navier–Stokes equation. Numer Math 59(1):13–29

    Article  MathSciNet  MATH  Google Scholar 

  137. Tobiska L, Verfürth R (1996) Analysis of a streamline diffusion finite element method for the Stokes and Navier–Stokes equations. SIAM J Numer Anal 33(1):107–127

    Article  MathSciNet  MATH  Google Scholar 

  138. Vaněk P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56(3):179–196 International GAMM-Workshop on Multi-level Methods (Meisdorf, 1994)

    Article  MathSciNet  MATH  Google Scholar 

  139. Verfürth R (1984) Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal Numér 18(2):175–182

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research of Tomás Chacón Rebollo and Samuele Rubino has been partially supported by the Spanish Government Project MTM2012-36124-C02-01. Samuele Rubino would also gratefully acknowledge the financial support received from VPPI-US (V Plan Propio de Investigación-Universidad de Sevilla) and FSMP (Fondation Sciences Mathématiques de Paris) during his postdoctoral research involved in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Rubino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Chacón Rebollo, T., John, V. et al. A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows. Arch Computat Methods Eng 24, 115–164 (2017). https://doi.org/10.1007/s11831-015-9161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-015-9161-0

Navigation