Skip to main content
Log in

Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications

  • S.I.: Machine learning in computational mechanics
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this paper, we present the concept of a “shape manifold” designed for reduced order representation of complex “shapes” encountered in mechanical problems, such as design optimization, springback or image correlation. The overall idea is to define the shape space within which evolves the boundary of the structure. The reduced representation is obtained by means of determining the intrinsic dimensionality of the problem, independently of the original design parameters, and by approximating a hyper surface, i.e. a shape manifold, connecting all admissible shapes represented using level set functions. Also, an optimal parameterization may be obtained for arbitrary shapes, where the parameters have to be defined a posteriori. We also developed the predictor-corrector optimization manifold walking algorithms in a reduced shape space that guarantee the admissibility of the solution with no additional constraints. We illustrate the approach on three diverse examples drawn from the field of computational and applied mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Alfaro I, Yvonnet J, Cueto E, Chinesta F, Doblare M (2006) Meshless methods with application to metal forming. Comput Methods Appl Mech Eng 195(48-49):6661-6675 (Computational Metal Forming)

  2. Alkorta J, Martinez-Esnaola J, Sevillano JG (2005) Absence of one-to-one correspondence between elastoplastic properties and sharp-indentation load-penetration data. J Mater Res 20(02):432–437

    Article  Google Scholar 

  3. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  4. Audouze C, De Vuyst F, Nair P (2009) Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis. Int J Numer Methods Eng 80(8):1025–1057

    Article  MathSciNet  MATH  Google Scholar 

  5. Balasubramanian M, Schwartz EL (2002) The isomap algorithm and topological stability. Science 295(5552):7–7

    Article  Google Scholar 

  6. Benamara T, Breitkopf P, Lepot I, Sainvitu C (2016) Adaptive infill sampling criterion for multi-fidelity optimization based on Gappy-POD. Struct Multidiscip Optim. doi:10.1007/s00158-016-1440-3

    Google Scholar 

  7. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25(1):539–575

    Article  MathSciNet  Google Scholar 

  8. Bocciarelli M, Bolzon G, Maier G (2005) Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech Mater 37(8):855–868

    Article  Google Scholar 

  9. Bolzon G, Maier G, Panico M (2004) Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct 41(11):2957–2975

    Article  MATH  Google Scholar 

  10. Breitkopf P, Kleiber M (1987) Knowledge engineering enhancement of finite element analysis. Commun Appl Numer Methods 3(5):359–366

    Article  MATH  Google Scholar 

  11. Breitkopf P, Naceur H, Rassineux A, Villon P (2005) Moving least squares response surface approximation: formulation and metal forming applications. Comput Struct 83(17–18):1411–1428

    Article  Google Scholar 

  12. Breitkopf P, Rassineux A, Villon P (2002) An introduction to moving least squares meshfree methods. Revue Europeenne des Elements 11(7–8):825–867

    MATH  Google Scholar 

  13. Camastra F (2003) Data dimensionality estimation methods: a survey. Pattern Recognit 36(12):2945–2954

    Article  MATH  Google Scholar 

  14. Castanier MP, Ottarsson G, Pierre C (1997) A reduced order modeling technique for mistuned bladed disks. J Vib Acoust 119(3):439–447

    Article  Google Scholar 

  15. Chen X, Ogasawara N, Zhao M, Chiba N (2007) On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J Mech Phys Solids 55(8):1618–1660

    Article  MATH  Google Scholar 

  16. Cheng YT, Cheng CM (2004) Scaling, dimensional analysis, and indentation measurements. Mater Sci Eng R Rep 44(4):91–149

    Article  MathSciNet  Google Scholar 

  17. Chinesta F, Ammar A, Cueto E (2010) Proper generalized decomposition of multiscale models. Int J Numer Methods Eng 83(8–9):1114–1132

    Article  MATH  Google Scholar 

  18. Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18(4):395–404

    Article  Google Scholar 

  19. Coelho RF, Breitkopf P, Knopf-Lenoir C (2009) Bi-level model reduction for coupled problems. Struct Multidiscip Optim 39(4):401–418

    Article  MathSciNet  MATH  Google Scholar 

  20. Cordier L, El Majd BA, Favier J (2010) Calibration of pod reduced order models using tikhonov regularization. Int J Numer Methods Fluids 63(2):269–296

    MathSciNet  MATH  Google Scholar 

  21. Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  22. Couplet M, Basdevant C, Sagaut P (2005) Calibrated reduced-order pod-galerkin system for fluid flow modeling. J Comput Phys 207(1):192–220

    Article  MathSciNet  MATH  Google Scholar 

  23. Cox TF, Cox MA (2000) Multidimensional scaling. CRC Press, Boca Raton

    MATH  Google Scholar 

  24. D’Acquisto L, Fratini L (2001) An optical technique for springback measurement in axisymmetrical deep drawing operations. J Manuf Process 3(1):29–37

    Article  Google Scholar 

  25. Dulong JL, Druesne F, Villon P (2007) A model reduction approach for real-time part deformation with nonlinear mechanical behavior. Int J Interact Des Manuf 1(4):229–238

    Article  Google Scholar 

  26. Duvigneau R (2006) Adaptive parameterization using free-form deformation for aerodynamic shape optimization. INRIA Research Report RR-5949

  27. Eggertsen PA, Mattiasson K (2009) On the modelling of the bendingunbending behaviour for accurate springback predictions. Int J Mech Sci 51(7):547–563

    Article  Google Scholar 

  28. Forrester AIJ, Keane AJ (2009) Recent advances in surrogate-based optimization. Prog Aerosp Sci 45:50–79

    Article  Google Scholar 

  29. Freund Y, Mason L (1999) The alternating decision tree learning algorithm. In: icml, vol 99, pp 124-133

  30. Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D (2000) Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10):906–914

    Article  Google Scholar 

  31. Gao T, Zhang W, Duysinx P (2012) A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int J Numer Methods Eng 91(1):98–114

    Article  MATH  Google Scholar 

  32. Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331

    Article  MATH  Google Scholar 

  33. Ghnatios C, Chinesta F, Cueto E, Leygue A, Breitkopf P, Villon P (2011) Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: application to pultrusion. Compos Part A 42:1169–1178

    Article  Google Scholar 

  34. Ghnatios C, Masson F, Huerta A, Cueto E, Leygue A, Chinesta F (2012) Proper generalized decomposition based dynamic data-driven control of thermal processes. Comput Methods Appl Mech Eng 213:29–41

    Article  Google Scholar 

  35. Gibson RF (2014) A review of recent research on nanoindentation of polymer composites and their constituents. Compos Sci Technol 105:51–65

    Article  Google Scholar 

  36. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  37. Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer Math 14(5):403–420

    Article  MathSciNet  MATH  Google Scholar 

  38. Gonzalez D, Cueto E, Chinesta F (2015) Computational patient avatars for surgery planning. Ann Biomed Eng. doi:10.1007/s10439-015-1362-z

    Google Scholar 

  39. Hagan MT, Demuth HB, Beale MH, De Jesús O (1996) Neural network design, vol 20. PWS Publishing Company, Boston

    Google Scholar 

  40. Hoang K, Kerfriden P, Bordas S (2016) A fast, certified and tuning free two-field reduced basis method for the metamodelling of affinely-parametrised elasticity problems. Comput Methods Appl Mech Eng 298:121–158

    Article  MathSciNet  Google Scholar 

  41. Hou Y, Sapanathan T, Dumon A, Culière P, Rachik M (2016) A novel artificial dual-phase microstructure generator based on topology optimization. Comput Mater Sci 123:188–200

    Article  Google Scholar 

  42. Hurtado JE (2013) Structural reliability: statistical learning perspectives, vol 17. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  43. Ibrahimbegovic A, Knopf-Lenoir C, Kucerova A, Villon P (2008) Optimal design and optimal control of elastic structures undergoing finite rotations and deformations. Int J Numer Methods Eng 61:2428–2460

    Article  MATH  Google Scholar 

  44. Ito K, Ravindran S (1998) A reduced-order method for simulation and control of fluid flows. J Comput Phys 143(2):403–425

    Article  MathSciNet  MATH  Google Scholar 

  45. Jan S, Zolesio J (1992) Shape sensitivity analysis. Introduction to shape optimization, Springer, Berlin

    MATH  Google Scholar 

  46. Jolliffe I (2002) Principal component analysis. Wiley Online Library, New York

    MATH  Google Scholar 

  47. Lassila T, Rozza G (2010) Parametric free-form shape design with PDE models and reduced basis method. Comput Methods Appl Mech Eng 199(23–24):1583–1592

    Article  MathSciNet  MATH  Google Scholar 

  48. Le Quilliec G, Raghavan B, Breitkopf P (2015) A manifold learning-based reduced order model for springback shape characterization and optimization in sheet metal forming. Comput Methods Appl Mech Eng 285:621–638

    Article  MathSciNet  Google Scholar 

  49. Legrain G, Cartraud P, Perreard I, Moes N (2011) An x-fem and level set computational approach for image-based modelling: application to homogenization. Int J Numer Methods Eng 86(7):915–934

    Article  MATH  Google Scholar 

  50. Li K, Carden W, Wagoner R (2002) Simulation of springback. Int J Mech Sci 44(1):103–122

    Article  MATH  Google Scholar 

  51. Lopez E, Gonzalez D, Aguado J, Abisset-Chavanne E, Cueto E, Binetruy C, Chinesta F (2016) A manifold learning approach for integrated computational materials engineering. Arch Comput Methods Eng. doi:10.1007/s11831-016-9172-5

    Google Scholar 

  52. Lucia DJ, Beran PS, Silva WA (2004) Reduced-order modeling: new approaches for computational physics. Prog Aerosp Sci 40(1):51–117

    Article  Google Scholar 

  53. Manzoni A, Quarteroni A, Rozza G (2012) Shape optimization for viscous flows by reduced basis methods and free-form deformation. Int J Numer Methods Fluids 70(5):646–670

    Article  MathSciNet  Google Scholar 

  54. Marteau J, Bouvier S, Bigerelle M (2015) Review on numerical modeling of instrumented indentation tests for elastoplastic material behavior identification. Arch Comput Methods Eng 22(4):577–593

    Article  MathSciNet  MATH  Google Scholar 

  55. Meng L, Zhang WH, Zhu JH, Xia L (2014) A biarc-based shape optimization approach to reduce stress concentration effects. Acta Mechanica Sinica 30(3):370–382

  56. Meng L, Breitkopf P, Raghavan B, Mauvoisin G, Bartier O, Hernot X (2015) Identification of material properties using indentation test and shape manifold learning approach. Comput Methods Appl Mech Eng 297:239–257

    Article  MathSciNet  Google Scholar 

  57. Meng L, Zhang WH, Zhu JH, Xu Z, Cai SY (2016) Shape optimization of axisymmetric solids with the finite cell method using a fixed grid. Acta Mechanica Sinica 32(3):510–524

  58. Millan D, Rosolen A, Arroyo M (2013) Nonlinear manifold learning for meshfree finite deformation thin-shell analysis. Int J Numer Methods Eng 93(7):685–713

    Article  MathSciNet  MATH  Google Scholar 

  59. Millan D, Rosolen A, Arroyo M (2013) Nonlinear manifold learning for model reduction in finite elastodynamics. Comput Methods Appl Mech Eng 261(7):118–131

    MathSciNet  MATH  Google Scholar 

  60. Minsky M (1961) Steps toward artificial intelligence. Proc IRE 49(1):8–30

    Google Scholar 

  61. Moes N, Stolz C, Bernard P, Chevaugeon N (2011) A level set based model for damage growth: The thick level set approach. Int J Numer Methods Eng 86(3):358–380

    Article  MathSciNet  MATH  Google Scholar 

  62. Montgomery DC, Peck EA, Vining GG (2006) Introduction to linear regression. Wiley, New Jersey

    MATH  Google Scholar 

  63. Moon Y, Kang S, Cho J, Kim T (2003) Effect of tool temperature on the reduction of the springback of aluminum sheets. J Mater Process Technol 132(1–3):365–368

    Article  Google Scholar 

  64. Moussa C, Hernot X, Bartier O, Delattre G, Mauvoisin G (2014) Identification of the hardening law of materials with spherical indentation using the average representative strain for several penetration depths. Mater Sci Eng A 606:409–416

    Article  Google Scholar 

  65. Murat F, Simon J (1976) Sur le controle par un domaine geometrique. Pre-publication du Laboratoire d’Analyse Numerique, no 76015, Universite de Paris 6

  66. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318

    Article  MATH  Google Scholar 

  67. Oshier S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  68. Olof Persson P, Strang G (2004) A simple mesh generator in Matlab. SIAM Rev 46(2):329–345

    Article  MathSciNet  MATH  Google Scholar 

  69. Peterson JS (1989) The reduced basis method for incompressible viscous flow calculations. SIAM J Sci Stat Comput 10(4):777–786

    Article  MathSciNet  MATH  Google Scholar 

  70. Prud’homme C, Rovas DV, Veroy K, Machiels L, Maday Y, Patera AT, Turinici G (2002) Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J Fluids Eng Trans ASME 124(1):70–80

    Article  Google Scholar 

  71. Quarteroni A, Rozza G, Manzoni A (2011) Certified reduced basis approximation for parametrized partial differential equations and applications. J Math Ind 1(1):1–49

    Article  MathSciNet  MATH  Google Scholar 

  72. Raghavan B, Breitkopf P, Tourbier Y, Villon P (2013) Towards a space reduction approach for structural shape optimization. Struct Multidiscip Optim. doi:10.1007/s00158-013-0942-5

    Google Scholar 

  73. Raghavan B, Hamdaoui M, Xiao M, Breitkopf P, Villon P (2012) A bi-level meta-modeling approach for structural optimization using modified POD bases and diffuse approximation. Comput Struct 127:19–28

    Article  Google Scholar 

  74. Raghavan B, Le Quilliec G, Breitkopf P, Rassineux A, Roelandt JM, Villon P (2014) Numerical assessment of springback for the deep drawing process by level set interpolation using shape manifolds. Int J Mater Form 7(4):487–501

    Article  Google Scholar 

  75. Raghavan B, Xia L, Breitkopf P, Rassineux A, Villon P (2013) Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design. Comput Methods Appl Mech Eng 265:174–185

    Article  MathSciNet  MATH  Google Scholar 

  76. Raghavan B, Xia L, Breitkopf P, Rassineux A, Villon P (2013) Towards simultaneous reduction of both input and output spaces for interactive simulation-based structural design. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2013.06.010

    MathSciNet  MATH  Google Scholar 

  77. Raghavan B, Xiao M, Breitkopf P, Villon P (2012) Implicit constraint handling for shape optimization using pod-morphing. Eur J Comput Mech 21(3–6):325–336

    MATH  Google Scholar 

  78. Rokach L, Maimon O (2014) Data mining with decision trees: theory and applications. World Scientific, Singapore

    Book  MATH  Google Scholar 

  79. Rozza G, Huynh D, Patera A (2008) Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch Comput Methods Eng 15(3):229–275

    Article  MathSciNet  MATH  Google Scholar 

  80. Russell S, Norvig P, Intelligence A (1995) A modern approach. Artificial intelligence. Prentice-Hall, Egnlewood Cliffs, pp 25–27

    Google Scholar 

  81. Sahan RA, Gunes H, Liakopoulos A (1998) A modeling approach to transitional channel flow. Comput Fluids 27(1):121–136

    Article  MATH  Google Scholar 

  82. Samuel AL (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229

    Article  MathSciNet  Google Scholar 

  83. Saul LK, Roweis ST (2000) An introduction to locally linear embedding. Unpublished. http://www.cs.toronto.edu/~roweis/lle/publications.html

  84. Saul LK, Weinberger KQ, Ham JH, Sha F, Lee DD (2006) Spectral methods for dimensionality reduction. Semisupervised Learn, MIT Press, Cambridge, pp 293–308

  85. Schulz V (2012) A Riemannian view on shape optimization. Found Comput Math 14(3):483–501

    Article  MathSciNet  MATH  Google Scholar 

  86. Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR) 34(1):1–47

    Article  Google Scholar 

  87. Teimouri R, Baseri H, Rahmani B, Bakhshi-Jooybari M (2012) Modeling and optimization of spring-back in bending process using multiple regression analysis and neural computation. Int J Mater Form. doi:10.1007/s12289-012-1117-4

    Google Scholar 

  88. Toal DJJ, Keane AJ (2011) Efficient multipoint aerodynamic design optimization via cokriging. J Aircr 48(5):1685–1695

    Article  Google Scholar 

  89. Tong S, Koller D (2002) Support vector machine active learning with applications to text classification. J Mach Learn Res 2:45–66

    MATH  Google Scholar 

  90. Tu J, Choi KK, Park YH (1999) A new study on reliability-based design optimization. J Mech Des 121(4):557–564

    Article  Google Scholar 

  91. Veiz A, Egerland M (2007) Cad-parametric optimization with optiSLang-ANSYS workbench. In: 4th Weimar optimization and stochastic days

  92. Wang S, Lim K, Khoo B, Wang M (2007) An extended level set method for shape and topology optimization. J Comput Phys 221(1):395–421

    Article  MathSciNet  MATH  Google Scholar 

  93. Willcox K, Peraire J (2002) Balanced model reduction via the proper orthogonal decomposition. AIAA J 40(11):2323–2330

    Article  Google Scholar 

  94. Xia L, Raghavan B, Breitkopf P, Zhang W (2013) Numerical material representation using proper orthogonal decomposition and diffuse approximation. Appl Math Comput 224:450–462

    MathSciNet  MATH  Google Scholar 

  95. Xiao M, Breitkopf P, Coelho RF, Knopf-Lenoir C, Sidorkiewicz M, Villon P (2009) Model reduction by CPOD and kriging. Struct Multidiscip Optim 41(4):555–574

    Article  MATH  Google Scholar 

  96. Xie X, Mirmehdi M (2011) Radial basis function based level set interpolation and evolution for deformable modelling. Image Vis Comput 29(2–3):167–177

    Article  Google Scholar 

  97. Yagawa G, Okuda H (1996) Neural networks in computational mechanics. Arch Comput Methods Eng 3(4):435–512

    Article  Google Scholar 

  98. Zhang P, Breitkopf P, Knopf-Lenoir C, Zhang W (2011) Diffuse response surface model based on moving latin hypercube patterns for reliability-based design optimization of ultrahigh strength steel NC milling parameters. Struct Multidiscip Optim 44(5):613–628. doi:10.1007/s00158-011-0672-5

    Article  Google Scholar 

  99. Zhang WH, Beckers P, Fleury C (1995) Unified parametric design approach to structural shape optimization. Int J Numer Methods Eng 38(13):2283–2292

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Breitkopf.

Ethics declarations

Funding

This study was funded by National Natural Science Foundation of China (Ref No. 11620101002) and the China scholarship Council (Ref No. 201404490062).

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Breitkopf, P., Quilliec, G.L. et al. Nonlinear Shape-Manifold Learning Approach: Concepts, Tools and Applications. Arch Computat Methods Eng 25, 1–21 (2018). https://doi.org/10.1007/s11831-016-9189-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-016-9189-9

Navigation