Skip to main content
Log in

A Higher-Order Chimera Method for Finite Volume Schemes

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this work a higher-order accurate finite volume method for the resolution of the Euler/Navier–Stokes equations using Chimera grid techniques is presented. The formulation is based on the use of Moving Least Squares approximations in order to obtain higher-order accurate reconstruction and connectivity between the overlapped grids. The accuracy and performance of the proposed methodology is demonstrated by solving different benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Ramirez L, Foulquié C, Nogueira X, Khelladi S, Chassaing JC, Colominas I (2015) New high-resolution-preserving sliding mesh techniques for higher-order finite volume schemes. Comput Fluids 118:114–130

    Article  MathSciNet  Google Scholar 

  2. Ferrer E, Willden RHJ (2012) A high order discontinuous Galerkin-Fourier incompressible 3d Navier-Stokes solver with rotating sliding meshes. J Comput Phys 231:7037–7056

    Article  MathSciNet  MATH  Google Scholar 

  3. Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271

    Article  MATH  Google Scholar 

  4. Ouro P, Cea L, Ramirez L, Nogueira X (2016) An immersed boundary method for unstructured meshes in depth averaged shallow water models. Int J Numer Methods Fluids 81:672–688

    Article  MathSciNet  Google Scholar 

  5. Cristallo A, Verzicco R (2006) Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows. Flow Turbul Combust 77:3–26

    Article  MATH  Google Scholar 

  6. Kang C, Iaccarino G, Ham F (2009) DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method. J Comput Phys 228:3189–3208

    Article  MATH  Google Scholar 

  7. Clarke D, Salas M, Hassan H (1986) Euler calculations for multi-elements airfoils using Cartesian grids. AIAA J 24:353–358

    Article  MATH  Google Scholar 

  8. Steger J, Dougherty F, Benek J (1982) A chimera grid scheme. ASME Mini-Symposium on Advances in Grid Generation, Houston

    Google Scholar 

  9. Lee KR, Park JH, Kim KH (2011) High-order interpolation method for overset grid based on finite volume method. AIAA J 49:1387–1398

    Article  Google Scholar 

  10. Sherer SE, Scott JN (2005) High-order compact finite-difference methods on general overset grids. J Comput Phys 210:459–496

    Article  MATH  Google Scholar 

  11. Wang G, Duchaine F, Papadogiannis D, Duran I, Moreau S, Gicquel LYM (2014) An overset grid method for large eddy simulation of turbomachinery stages. J Comput Phys 274:343–355

    MATH  Google Scholar 

  12. Delfs JW (2001) An overlapped grid technique for high resolution CAA schemes for complex geometries. AIAA paper 2001–2199

  13. Lancaster P, Salkauskas K (1981) Surfaces generated by moving least squares methods. Math Comput 37(155):141–158

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu WK, Hao W, Chen Y, Jun S, Gosz J (1997) Multiresolution reproducing kernel particle methods. Comput Mech 20:295–309

    Article  MathSciNet  MATH  Google Scholar 

  15. Nogueira X, Cueto-Felgueroso L, Colominas I, Gómez H, Navarrina F, Casteleiro M (2009) On the accuracy of finite volume and discontinuous Galerkin discretizations for compressible flow on unstructured grids. Int J Numer Methods Eng 78:1553–1584

    Article  MathSciNet  MATH  Google Scholar 

  16. Nogueira X, Khelladi S, Colominas I, Cueto-Felgueroso L, París J, Gómez H (2011) High-resolution finite volume methods on unstructured grids for turbulence and aeroacoustics. Arch Comput Methods Eng 18(3):315–340

    Article  MathSciNet  MATH  Google Scholar 

  17. Cueto-Felgueroso L, Colominas I, Nogueira X, Navarrina F, Casteleiro M (2007) Finite volume solvers and moving least-squares approximations for the compressible Navier-Stokes equations on unstructured grids. Comput Methods Appl Mech Eng 196:4712–4736

    Article  MathSciNet  MATH  Google Scholar 

  18. Khelladi S, Nogueira X, Bakir F, Colominas I (2011) Toward a higher-order unsteady finite volume solver based on reproducing Kernel particle method. Comput Methods Appl Mech Eng 200:2348–2362

    Article  MATH  Google Scholar 

  19. Nogueira X, Cueto-Felgueroso L, Colominas I, Khelladi S (2010) On the simulation of wave propagation with a higher order finite volume scheme based on reproducing Kernel methods. Comput Methods Appl Mech Eng 199(155):1471–1490

    Article  MathSciNet  MATH  Google Scholar 

  20. Nogueira X, Ramirez L, Khelladi S, Chassaing JC, Colominas I (2016) A high-order density-based finite volume method for the computation of all-speed flows. Comput Methods Appl Mech Eng 298:229–251

    Article  MathSciNet  Google Scholar 

  21. Chassaing JC, Khelladi S, Nogueira X (2013) Accuracy assessment of a high-order moving least squares finite volume method for compressible flows. Comput Fluids 71:41–53

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics. A meshfree particle method. World Scientific Publishing, Singapore

    Book  MATH  Google Scholar 

  23. Liu GR, Gu YT (1999) A point interpolation method. Proc 4th Asia-Pacific Conference on Computational Mechanics, Singapore: 1009–1014

  24. Liu GR, Gu YT, Dai KY (2004) Assessment and applications of point interpolation methods for computational mechanics. Int J Numer Methods Eng 59:1373–1397

    Article  MATH  Google Scholar 

  25. Most T, Bucher C (2008) New concepts for moving least squares: an interpolation non-singular weighting function and weighted nodal least squares. Eng Anal Bound Elements 32:461–470

    Article  MATH  Google Scholar 

  26. Chiocchia G (1985) Exact solutions to transonic and supersonic flows.Technical Report AR-211

  27. Galbraith MC, Benek JA, Orkwis PD, Turner MG (2014) A discontinuous Galerkin Chimera scheme. Comput Fluids 98:27–53

    Article  MathSciNet  Google Scholar 

  28. Nogueira X, Cueto-Felgueroso L, Colominas I, Navarrina F, Casteleiro M (2010) A new shock-capturing technique based on moving least squares for higher-order numerical schemes on unstructured grids. Comput Methods Appl Mech Eng 199:2544–2558

    Article  MathSciNet  MATH  Google Scholar 

  29. Van Albada GD, Van Leer B, Roberts WW (1982) A comparative study of computational methods in cosmic gas dynamics. Astron Astrophys 108:76–84

    MATH  Google Scholar 

  30. Liepmann HW , Roshko A (2002) Elements of gasdynamics. Dover

  31. Niu XD, Chew YT, Shu C (2003) Simulation of flows around an impulsively started circular cylinder by taylor series expansion- and least squares-based lattice boltzmann method. J Comput Phys 188:176–193

    Article  MATH  Google Scholar 

  32. He X, Doolen GD (1997) Lattice boltzmann method on curvilinear coordinates system: flow around a circular cylinder. J Comput Phys 134:306–315

    Article  MATH  Google Scholar 

  33. Guilmineau E, Queutey P (2002) A numerical simulation of vortex shedding from an oscillating circular cylinder. J Fluids Struct 16:773–794

    Article  Google Scholar 

  34. Schneiders L, Hartmann D, Meinke M, Schröder W (2013) An accurate moving boundary formulation in cut-cell methods. J Comput Phys 235:786–809

    Article  MathSciNet  Google Scholar 

  35. Uhlmann M (2005) An immersed boundary method with direct forcing for the simulation of particle flows. J Comput Phys 209:448–476

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu YL, Shu C (2008) Application of local DFD method to simulate unsteady flows around an oscillating circular cylinder. Int J Numer Methods Fluids 58:1223–1236

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang X, Zhang X, Li Z, He GW (2009) A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations. J Comput Phys 228:7821–7836

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang J, Balaras E (2005) An embedded-bounday formulation for large-eddy simulation of turbulent flows ointeracting with moving boundaries. J Comput Phys 215:12–40

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Ministerio de Economía y Competitividad (grant #DPI2015-68431-R) of the Spanish Government and by the Consellería de Educación e Ordenación Universitaria of the Xunta de Galicia (grant #GRC2014/039), cofinanced with FEDER funds and the Universidade da Coruña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Ramírez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research Involving Human and Animal Participants

The research does not involve neither human participants nor animals.

Informed Consent

All the authors are informed and provided their consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez, L., Nogueira, X., Ouro, P. et al. A Higher-Order Chimera Method for Finite Volume Schemes. Arch Computat Methods Eng 25, 691–706 (2018). https://doi.org/10.1007/s11831-017-9213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-017-9213-8

Navigation