Skip to main content

Advertisement

Log in

Optimization of Metal Rolling Control Using Soft Computing Approaches: A Review

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

As one of the most important structural and functional materials, rolled-product plays an irreplaceable role in national economy, people’s lives and national development. Metallurgy industry is moving from traditional semi-automation to knowledge automation, process intelligence, and manufacturing information. Rolling exerts an essential impact on material properties and product quality as an important part of the production in steel industry. Rolling process is multi-scale, multi-variable, nonlinear and unbalanced with strong coupling and non-steady state. With an increasing rolling speed, more difficulties like process information monitoring, behavior characteristics modeling, and controlling of high speed operating are manifested in high-speed continuous rolling mills. The existing control system of rolling process is difficult to cope with the condition changes of high-speed rolling and the specification changes of complex products. The main reason lies in the fact that the prediction of force parameters is based on traditional mathematical models, and the procedure parameter setting depends on static optimization methods. In order to achieve precise control of large-scale and high-speed rolling, the analysis of rolling process rules based on industrial big data should be considered to establish the dynamic process model, and multi-objective real-time computational method of rolling schedules should also be introduced. Through a summary of steel industry and a review of the history of rolling optimization, the purpose is to explore the relationship between the optimization objectives of the rolling schedule and the process parameters of the rolling process, reveal the rules of how rolling conditions affecting rolling process in high speed rolling and provide theoretical basis and technical support to the production of steel industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdullah MA, Ab Rashid MFF, Ghazalli Z (2019) Optimization of assembly sequence planning using soft computing approaches: a review. Arch Comput Methods Eng 26(2):461–474. https://doi.org/10.1007/s11831-018-9250-y

    Article  Google Scholar 

  2. Ablat MA, Qattawi A (2017) Numerical simulation of sheet metal forming: a review. Int J Adv Manuf Technol 89(1):1235–1250. https://doi.org/10.1007/s00170-016-9103-5

    Article  Google Scholar 

  3. Alaei H, Salimi M, Nourani A (2016) Online prediction of work roll thermal expansion in a hot rolling process by a neural network. Int J Adv Manuf Technol 85(5):1769–1777. https://doi.org/10.1007/s00170-015-8073-3

    Article  Google Scholar 

  4. Altnkaya H, Orak LM, Esen S (2014) Artificial neural network application for modeling the rail rolling process. Expert Syst Appl 41(16):7135–7146. https://doi.org/10.1016/j.eswa.2014.06.014

    Article  Google Scholar 

  5. Ataka M (2015) Rolling technology and theory for the last 100 years: the contribution of theory to innovation in strip rolling technology. ISIJ Int 55(1):89–102. https://doi.org/10.2355/isijinternational.55.89

    Article  Google Scholar 

  6. Bu H, Yan Z, Zhang D (2017) A novel approach to improve the computing accuracy of rolling force and forward slip. Ironmak Steelmak 46(3):269–276. https://doi.org/10.1080/03019233.2017.1369681

    Article  Google Scholar 

  7. Bu H, Yan Z, Zhang D (2018) Application of case-based reasoning-tabu search hybrid algorithm for rolling schedule optimization in tandem cold rolling. Eng Comput 35(1):187–201. https://doi.org/10.1108/EC-02-2017-0054

    Article  Google Scholar 

  8. Chandrasekaran M, Muralidhar M, Krishna CM, Dixit US (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46(5–8):445–464. https://doi.org/10.1007/s00170-009-2104-x

    Article  Google Scholar 

  9. Chen C, Yan J, Lu N, Wang Y, Yang X, Guan X (2015) Ubiquitous monitoring for industrial cyber-physical systemsover relay assisted wireless sensor networks. IEEE Trans Emerg Top Comput 3(3):352–362. https://doi.org/10.1109/TETC.2014.2386615

    Article  Google Scholar 

  10. Chen J, Chandrashekhara K, Mahimkar C, Lekakh SN, Richards VL (2011) Void closure prediction in cold rolling using finite element analysis and neural network. J Mater Process Technol 211(2):245–255. https://doi.org/10.1016/j.jmatprotec.2010.09.016

    Article  Google Scholar 

  11. Chen S, Zhang X, Peng L, Zhang D, Sun J, Liu Y (2014) Multi-objective optimization of rolling schedule based on cost function for tandem cold mill. J Cent South Univ 21:1733–1740. https://doi.org/10.1007/s11771-014-2117-y

    Article  Google Scholar 

  12. Comis Da Ronco C, Ponza R, Benini E (2014) Aerodynamic shape optimization in aeronautics: a fast and effective multi-objective approach. Arch Comput Methods Eng 21(3):189–271. https://doi.org/10.1007/s11831-014-9123-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng GY, Zhu HT, Tieu AK, Su LH, Reid M, Zhang L, Wei PT, Zhao X, Wang H, Zhang J, Li JT, Ta TD, Zhu Q, Kong C, Wu Q (2017) Theoretical and experimental investigation of thermal and oxidation behaviours of a high speed steel work roll during hot rolling. Int J Mech Sci 131–132:811–826. https://doi.org/10.1016/j.ijmecsci.2017.08.024

    Article  Google Scholar 

  14. Deng GY, Zhu Q, Tieu K, Zhu HT, Reid M, Saleh AA, Su LH, Ta TD, Zhang J, Lu C, Wu Q, Sun DL (2017) Evolution of microstructure, temperature and stress in a high speed steel work roll during hot rolling: experiment and modelling. J Mater Process Technol 240:200–208. https://doi.org/10.1016/j.jmatprotec.2016.09.025

    Article  Google Scholar 

  15. Dimatteo A, Vannucci M, Colla V (2014) Prediction of mean flow stress during hot strip rolling using genetic algorithms. ISIJ Int 54(1):171–178. https://doi.org/10.2355/isijinternational.54.171

    Article  Google Scholar 

  16. Downes A, Hartley P (2006) Using an artificial neural network to assist roll design in cold roll-forming processes. J Mater Process Technol 177(1–3):319–322. https://doi.org/10.1016/j.jmatprotec.2006.03.207

    Article  Google Scholar 

  17. Du X, Yang Q, Lu C, Wang A, Kiet TA (2010) Optimization of short stroke control preset for automatic width control of hot rolling mill. J Iron Steel Res Int 17(6):16–20. https://doi.org/10.1016/S1006-706X(10)60107-0

    Article  Google Scholar 

  18. Faris H, Sheta A, Znergiz E (2013) Modelling hot rolling manufacturing process using soft computing techniques. Int J Comput Integr Manuf 26(8):762–771. https://doi.org/10.1080/0951192X.2013.766937

    Article  Google Scholar 

  19. Geddes EJM, Postlethwaite I (1998) Improvements in product quality in tandem cold rolling using robust multivariable control. IEEE Trans Control Syst Technol 6(2):257–269. https://doi.org/10.1109/87.664192

    Article  Google Scholar 

  20. Halim AH, Ismail I (2019) Combinatorial optimization: comparison of heuristic algorithms in travelling salesman problem. Arch Comput Methods Eng 26(2):367–380. https://doi.org/10.1007/s11831-017-9247-y

    Article  MathSciNet  Google Scholar 

  21. Heidari A, Forouzan MR (2013) Optimization of cold rolling process parameters in order to increasing rolling speed limited by chatter vibrations. J Adv Res 4(1):27–34. https://doi.org/10.1016/j.jare.2011.12.001

    Article  Google Scholar 

  22. Hu Z, Yang J, Zhao Z, Sun H, Che H (2016) Multi-objective optimization of rolling schedules on aluminum hot tandem rolling. Int J Adv Manuf Technol 85(1):85–97. https://doi.org/10.1007/s00170-015-7909-1

    Article  Google Scholar 

  23. Imai I (1964) Continuous rolling theory in hot strip mill and its application. Bull JSME 7(26):430–436. https://doi.org/10.1299/jsme1958.7.430

    Article  Google Scholar 

  24. Jia S, Li W, Liu X, Du B (2013) Multi-objective load distribution optimization for hot strip mills. J Iron Steel Res Int 20(2):27–61. https://doi.org/10.1016/S1006-706X(13)60052-7

    Article  Google Scholar 

  25. Jingming Y, Haijun C, Fuping D (2008) Genetic algorithm-based optimization used in rolling schedule. J Iron Steel Res Int 15(2):18–22. https://doi.org/10.1016/s1006-706x(08)60024-2

    Article  Google Scholar 

  26. John S, Sikdar S, Swamy PK, Das S, Maity B (2008) Hybrid neural GA model to predict and minimise flatness value of hot rolled strips. J Mater Process Technol 195(1):314–320. https://doi.org/10.1016/j.jmatprotec.2007.05.014

    Article  Google Scholar 

  27. Jung C, Zaefferer M, Bartz-Beielstein T, Rudolph G (2017) Metamodel-based optimization of hot rolling processes in the metal industry. Int J Adv Manuf Technol 90(1):421–435. https://doi.org/10.1007/s00170-016-9386-6

    Article  Google Scholar 

  28. Koohbor B (2016) Finite element modeling of thermal and mechanical stresses in work-rolls of warm strip rolling process. Proc Inst Mech Eng B J Eng Manuf 230(6):1076–1086. https://doi.org/10.1177/0954405414564807

    Article  Google Scholar 

  29. Lee D, Lee Y (2002) Application of neural-network for improving accuracy of roll-force model in hot-rolling mill. Control Eng Pract 10(4):473–478. https://doi.org/10.1016/S0967-0661(01)00143-5

    Article  Google Scholar 

  30. Li G, Janabi-Sharifi F (2009) Fuzzy looperless tension control for hot strip rolling. Fuzzy Sets Syst 160(4):521–536. https://doi.org/10.1016/j.fss.2008.04.013

    Article  MathSciNet  MATH  Google Scholar 

  31. Li H, Xu J, Wang G, Liu X (2007) Improvement on conventional load distribution algorithm in hot tandem mills. J Iron Steel Res Int 14(2):36–41. https://doi.org/10.1016/s1006-706x(07)60024-7

    Article  Google Scholar 

  32. Lin Z, Yang W (1995) Rolling process analysis of aluminum strip by a coupled thermo-elastic-plastic model. Int J Mach Tools Manuf 35(4):619–635. https://doi.org/10.1016/0890-6955(94)P4354-W

    Article  Google Scholar 

  33. Liu C, He A, Qiang Y, Guo D, Shao J (2018) Effect of internal stress of incoming strip on hot rolling deformation based on finite element and infinite element coupling method. Met Open Access Metall J 8(2):92–104. https://doi.org/10.3390/met8020092

    Article  Google Scholar 

  34. Liu X, Zhao Q, Liu L (2014) Recent development on theory and application of variable gauge rolling, a review. Acta Metall Sin (Engl Lett) 27(3):483–493. https://doi.org/10.1007/s40195-014-0065-z

    Article  MathSciNet  Google Scholar 

  35. Mahmoodkhani Y, Wells MA, Song G (2017) Prediction of roll force in skin pass rolling using numerical and artificial neural network methods. Ironmak Steelmak 44(4):281–286. https://doi.org/10.1080/03019233.2016.1210405

    Article  Google Scholar 

  36. Masanari K (2002) Continuous rolling of sheet products footsteps of engineers who have persured in world’s. Metallurgical Industry Press, Beijing

    Google Scholar 

  37. Montmitonnet P (2006) Hot and cold strip rolling processes. Comput Methods Appl Mech Eng 195(48):6604–6625. https://doi.org/10.1016/j.cma.2005.10.014

    Article  MATH  Google Scholar 

  38. Montmitonnet P, Fourment L, Ripert U, Ngo QT, Ehrlacher A (2016) State of the art in rolling process modelling. BHM Berg und Huttenmannische Monatshefte 161(9):396–404. https://doi.org/10.1007/s00501-016-0520-4

    Article  Google Scholar 

  39. Nandan R, Rai R, Jayakanth R, Moitra S, Chakraborti N, Mukhopadhyay A (2005) Regulating crown and flatness during hot rolling: a multiobjective optimization study using genetic algorithms. Mater Manuf Process 20(3):459–478. https://doi.org/10.1081/AMP-200053462

    Article  Google Scholar 

  40. Oduguwa V, Tiwari A, Roy R (2005) Evolutionary computing in manufacturing industry: an overview of recent applications. Appl Soft Comput J 5(3):281–299. https://doi.org/10.1016/j.asoc.2004.08.003

    Article  Google Scholar 

  41. Otsuka T, Sakamoto M, Takamachi Y, Higashida Y, Segawa Y, Takeshima S (2017) An online rolling model for plate mill using parallel computation. ISIJ Int 57(11):2042–2048. https://doi.org/10.2355/isijinternational.ISIJINT-2017-299

    Article  Google Scholar 

  42. Pittner J, Simaan MA (2018) Streamlining the tandem hot-metal-strip mill: threading progress stems from the use of advanced control with virtual rolling. IEEE Ind Appl Mag 24(2):35–44. https://doi.org/10.1109/MIAS.2017.2740473

    Article  Google Scholar 

  43. Poursina M, Dehkordi NT, Fattahi A, Mirmohammadi H (2012) Application of genetic algorithms to optimization of rolling schedules based on damage mechanics. Simul Model Pract Theory 22:61–73. https://doi.org/10.1016/j.simpat.2011.11.005

    Article  Google Scholar 

  44. Pratihar DK (2015) Expert systems in manufacturing processes using soft computing. Int J Adv Manuf Technol 81(5):887–896. https://doi.org/10.1007/s00170-015-7285-x

    Article  MathSciNet  Google Scholar 

  45. Schausberger F, Steinboeck A, Kugi A (2018) Feedback control of the contour shape in heavy-plate hot rolling. IEEE Trans Control Syst Technol 26(3):842–856. https://doi.org/10.1109/TCST.2017.2695168

    Article  MATH  Google Scholar 

  46. Shahani AR, Setayeshi S, Nodamaie SA, Asadi MA, Rezaie S (2009) Prediction of influence parameters on the hot rolling process using finite element method and neural network. J Mater Process Technol 209(4):1920–1935. https://doi.org/10.1016/j.jmatprotec.2008.04.055

    Article  Google Scholar 

  47. Shardt YAW, Mehrkanoon S, Zhang K, Yang X, Suykens J, Ding SX, Peng K (2018) Modelling the strip thickness in hot steel rolling mills using least-squares support vector machines. Can J Chem Eng 96(1):171–178. https://doi.org/10.1002/cjce.22956

    Article  Google Scholar 

  48. Sui X, Lv Z (2016) Prediction of the mechanical properties of hot rolling products by using attribute reduction elm. Int J Adv Manuf Technol 85(5):1395–1403. https://doi.org/10.1007/s00170-015-8039-5

    Article  Google Scholar 

  49. Takahashi R (2001) State of the art in hot rolling process control. Control Eng Pract 9(9):987–993. https://doi.org/10.1016/S0967-0661(01)00087-9

    Article  MathSciNet  Google Scholar 

  50. Tiwari A, Oduguwa V, Roy R (2008) Rolling system design using evolutionary sequential process optimization. IEEE Trans Evol Comput 12(2):196–202. https://doi.org/10.1109/TEVC.2007.896688

    Article  Google Scholar 

  51. Wang D, Liu F, Jin Y (2017) A proactive scheduling approach to steel rolling process with stochastic machine breakdown. Nat Comput. https://doi.org/10.1007/s11047-016-9599-5

    Article  Google Scholar 

  52. Wang DD, Tieu AK, Boer FGD, Ma B, Yuen WYD (2000) Toward a heuristic optimum design of rolling schedules for tandem cold rolling mills. Eng Appl Artif Intell 13(4):397–406. https://doi.org/10.1016/s0952-1976(00)00016-6

    Article  Google Scholar 

  53. Wang H, Su L, Yu H, Lu C, Tieu AK, Liu Y, Zhang J (2018) A new finite element model for multi-cycle accumulative roll-bonding process and experiment verification. Mater Sci Eng A 726:93–101. https://doi.org/10.1016/j.msea.2018.04.040

    Article  Google Scholar 

  54. Wang Z, Gong D, Li X, Li G, Zhang D (2017) Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm (ANN-GA). Int J Adv Manuf Technol 93(9):3325–3338. https://doi.org/10.1007/s00170-017-0711-5

    Article  Google Scholar 

  55. Wei-Gang LI, Liu C, Feng N, Chen X, Liu XH (2016) Friction estimation and roll force prediction during hot strip rolling. J Iron Steel Res Int 23(12):1268–1276. https://doi.org/10.1016/S1006-706X(16)30187-X

    Article  Google Scholar 

  56. XinPing G, CaiLian C, Bo Y, ChangChun H, Ling L, ShanYing Z (2019) Towards the integration of sensing, transmission and control for industrial network systems: challenges and recent developments. Acta Autom Sin 45(1):25–36. https://doi.org/10.16383/j.aas.c180484

    Article  Google Scholar 

  57. Yamada Y, Yoshimura N, Sakurai T (1968) Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method. Int J Mech Sci 10(5):343–354. https://doi.org/10.1016/0020-7403(68)90001-5

    Article  MATH  Google Scholar 

  58. Yang J, Zhang Q, Che H, Han X (2010) Multi-objective optimization for tandem cold rolling schedule. J Iron Steel Res Int 17(11):34–39. https://doi.org/10.1016/s1006-706x(10)60167-7

    Article  Google Scholar 

  59. Yang YY, Linkens DA, Talamantes-Silva J, Howard IC (2003) Roll force and torque prediction using neural network and finite element modelling. ISIJ Int 43(12):1957–1966. https://doi.org/10.2355/isijinternational.43.1957

    Article  Google Scholar 

  60. Yu HL, Lu C, Tieu AK, Li HJ, Godbole A, Zhang SH (2016) Special rolling techniques for improvement of mechanical properties of ultrafine-grained metal sheets: a review? Adv Eng Mater 18(5):754–769. https://doi.org/10.1002/adem.201500369

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61803327, 61703361), Natural Science Foundation of Hebei Province (Grant Nos. F2016203249, E2018203162). The authors would like to thank the editor and anonymous reviewers for their helpful comments and suggestions to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziyu Hu.

Ethics declarations

Conflict of interest

The authors declared that we have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wei, Z., Sun, H. et al. Optimization of Metal Rolling Control Using Soft Computing Approaches: A Review. Arch Computat Methods Eng 28, 405–421 (2021). https://doi.org/10.1007/s11831-019-09380-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09380-6

Navigation