Skip to main content
Log in

The Application of Soft Computing Models and Empirical Formulations for Hydraulic Structure Scouring Depth Simulation: A Comprehensive Review, Assessment and Possible Future Research Direction

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Prediction of scouring characteristics is one of the major issues in hydraulic and hydrology engineering. Over the past five decades, numerous empirical formulations (EFs), based on the regression of scouring data observed from laboratory experiments in the field, have been developed to predict scouring characteristics (typically, the equilibrium scour depth); yet, these EFs are sensitive to uncertainty of effective parameters and in some cases could not comprehend the actual internal mechanism between variables. In the last 20 years, Soft Computing (SC) approaches have been increasingly adopted as an alternative for modeling scouring depth surrounding hydraulic structures. In this respect, several SC algorithms are examined as new era of modeling methodologies for extracting scouring depth equations. Lately, these algorithms have been vastly adopted for scouring simulation with various advanced version of SC such as hybrid intelligence models. The motivation of the current research is to exhibit all the established researches on the implementation of EF and SC models for multiple scouring depth modeling such as around pipeline, bridges abutment, piles and grade-control structures. A comprehensive review of the up-to-date researches on the scouring depth phenomena is presented, placing special emphasis on the recent applications of SC models and also recalling all the performed experimental laboratory studies. The review is included an informative evaluation and assessment of the surveyed researches. The improvement in prediction performance provided by the SC models when compared to empirical formulations is discussed and based on the current state-of-the-art, several research gaps are recognized, and possible future research directions are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aderibigbe O, Rajaratnam N (1998) Effect of sediment gradation on erosion by plane turbulent wall jets. J Hydraul Eng 124(10):1034–1042

    Google Scholar 

  2. Adhikari RS, Moselhi O, Bagchi A (2012) Automated prediction of condition state rating in bridge inspection. Gerontechnology. https://doi.org/10.4017/gt.2012.11.02.153.00

    Article  Google Scholar 

  3. Afzali SH (2016) New model for determining local scour depth around piers. Arab J Sci Eng. https://doi.org/10.1007/s13369-015-1983-4

    Article  Google Scholar 

  4. Ahmad Z (2007) Two-dimensional mixing of pollutants in open channels. A technical report submitted to DST, New Delhi

  5. Akhmedov TH (1988) Calculation of the depth of scour in rock downstream of a spillway. In: International water power and dam construction IWPCDM 40

  6. Amini A, Melville BW, Ali TM, Ghazali AH (2012) Clear-water local scour around pile groups in shallow-water flow. J Hydraul Eng 138(2):177–185

    Google Scholar 

  7. Angeline PJ (1994) Genetic programming: on the programming of computers by means of natural selection. Biosystems. https://doi.org/10.1016/0303-2647(94)90062-0

    Article  Google Scholar 

  8. Ardejani FD, Shokri BJ, Bagheri M, Soleimani E (2010) Investigation of pyrite oxidation and acid mine drainage characterization associated with Razi active coal mine and coal washing waste dumps in the Azad shahr–Ramian region, northeast Iran. Environ Earth Sci 61:1547–1560

    Google Scholar 

  9. Ardejani FD, Shokri BJ, Moradzadeh A, Soleimani E, Jafari MA (2008) A combined mathematical geophysical model for prediction of pyrite oxidation and pollutant leaching associated with a coal washing waste dump. Int J Environ Sci Technol 5:517–526

    Google Scholar 

  10. Ataie-Ashtiani B, Baratian-Ghorghi Z, Beheshti AA (2010) Experimental investigation of clear-water local scour of compound piers. J Hydraul Eng 136:343–351

    Google Scholar 

  11. Ataie-Ashtiani B, Beheshti AA (2006) Experimental investigation of clear-water local scour at pile groups. J Hydraul Eng 132:1100–1104

    Google Scholar 

  12. Ayoubloo MK, Azamathulla HM, Ahmad Z, Ab Ghani A, Mahjoobi J, Rasekh A (2011) Prediction of scour depth in downstream of ski-jump spillways using soft computing techniques. Int J Comput Appl. https://doi.org/10.2316/Journal.202.2011.1.202-3078

    Article  Google Scholar 

  13. Azamathulla HM, Zakaria NA (2007) An ANFIS-based approach for predicting the scour below flip-bucket spillway. Riverside Kuching, Sarawak, pp 6–8

  14. Azamathulla HMd (2012) Gene-expression programming to predict scour at a bridge abutment. J. Hydroinformatics. https://doi.org/10.2166/hydro.2011.135

    Article  Google Scholar 

  15. Azamathulla HMd (2012) Gene expression programming for prediction of scour depth downstream of sills. J Hydrol 460–461:156–159. https://doi.org/10.1016/j.jhydrol.2012.06.034

    Article  Google Scholar 

  16. Azamathulla HM (2005) Neural networks to estimate scour downstream of ski-jump bucket spillway [D]. Doctoral dissertation, PhD thesis

  17. Azamathulla HMd, Ab Ghani A, Azazi Zakaria N (2010) Prediction of scour below flip bucket using soft computing techniques. In: AIP conference proceedings. https://doi.org/10.1063/1.3452146

  18. Azamathulla HM, Ghani AA (2010) Genetic programming to predict river pipeline scour. J Pipeline Syst Eng Pract. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000060

    Article  Google Scholar 

  19. Azamathulla HM, Ghani AA, Zakaria NA (2009) ANFIS-based approach to predicting scour location of spillway. In: Proceedings of the institution of civil engineers-water management. Thomas Telford Ltd, pp 399–407

  20. Azamathulla HMd, Ghani AA, Zakaria NA, Guven A (2010) Genetic programming to predict bridge pier scour. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000133

    Article  Google Scholar 

  21. Azamathulla HM, Guven A, Demir YK (2011) Linear genetic programming to scour below submerged pipeline. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2011.03.005

    Article  Google Scholar 

  22. Azamathulla HM, Haque AAM (2013) Knowledge extraction from trained neural network scour model at culvert outlets. Neural Comput Appl. https://doi.org/10.1007/s00521-012-1164-2

    Article  Google Scholar 

  23. Azamathulla HM, Mohd. Yusoff MA (2013) Soft computing for prediction of river pipeline scour depth. Neural Comput Appl. https://doi.org/10.1007/s00521-012-1205-x

    Article  Google Scholar 

  24. Azamathulla M, Ghani AA, Zakaria N, Lai S, Chang C, Leow C, Abuhasan Z (2008) Genetic programming to predict ski-jump bucket spill-way scour. J Hydrodyn Ser B 20:477–484

    Google Scholar 

  25. Azar FA (1998) Effect of sediment size distribution on scour downstream of free overfall Spillway. Unpubl. master’s thesis. Tarbiat Modares Univ. Tehran, Iran

  26. Azmathullah HM, Deo MC, Deolalikar PB (2006) Estimation of scour below spillways using neural networks. J Hydraul Res. https://doi.org/10.1080/00221686.2006.9521661

    Article  Google Scholar 

  27. Azamathulla HM, Deo MC, Deolalikar PB (2008) Alternative neural networks to estimate the scour below spillways. Adv Eng Softw 39(8):689–698

    Google Scholar 

  28. Azmathullah HMd, Deo MC, Deolalikar PB (2005) Neural networks for estimation of scour downstream of a ski-jump bucket. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(898)

    Article  Google Scholar 

  29. Bajestan MS, Haj S, Gol A, Haghbin M (2016) Sensitivity analysis of effective factors on non- adherent sediment transportation in inverted Siphon by utilizing MLP model master of engineering in civil-water and hydraulic structures. Ecol Environ Conserv 22:1669–1672

    Google Scholar 

  30. Ballio F, Orsi E (2001) Time evolution of scour around bridge abutments. Water Eng Res 2:243–259

    Google Scholar 

  31. Ballio F, Teruzzi A, Radice A (2009) Constriction effects in clear-water scour at abutments. J Hydraul Eng 135:140–145

    Google Scholar 

  32. Balouchi B, Nikoo MR, Adamowski J (2015) Development of expert systems for the prediction of scour depth under live-bed conditions at river confluences: application of different types of ANNs and the M5P model tree. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2015.04.040

    Article  Google Scholar 

  33. Barbhuiya aK, Dey S (2004) Clear water scour at abutments. In: Proceedings of ICE—water management. https://doi.org/10.1680/wama.2004.157.2.77

  34. Bateni SM, Borghei SM, Jeng DS (2007) Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2006.06.012

    Article  Google Scholar 

  35. Bateni SM, Jeng DS (2007) Estimation of pile group scour using adaptive neuro-fuzzy approach. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2006.07.003

    Article  Google Scholar 

  36. Bateni SM, Jeng DS, Melville BW (2007) Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2006.08.004

    Article  Google Scholar 

  37. Bayram A, Larson M (2000) Analysis of scour around a group of vertical piles in the field. J Waterw Port Coast Ocean Eng 126:215–220

    Google Scholar 

  38. Baziar MH, Saeedi Azizkandi A, Kashkooli A (2014) Prediction of pile settlement based on cone penetration test results: an ANN approach. KSCE J Civ Eng. https://doi.org/10.1007/s12205-012-0628-3

    Article  Google Scholar 

  39. Beheshti AA, Ataie-Ashtiani B (2016) Discussion of “Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions” by M. Najafzadeh. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2016.07.005

    Article  Google Scholar 

  40. Benmouiza K, Cheknane A (2016) Small-scale solar radiation forecasting using ARMA and nonlinear autoregressive neural network models. Theor Appl Climatol 124:945–958. https://doi.org/10.1007/s00704-015-1469-z

    Article  Google Scholar 

  41. Bormann NE, Julien PY (1991) Scour downstream of grade-control structures. J Hydraul Eng 117:579–594

    Google Scholar 

  42. Breusers H, Raudkivi A (1991) Scouring, hydraulic structures design manual. AA Balkema, Rotterdam

    Google Scholar 

  43. Breusers HNC, Nicollet G, Shen HW (1977) Local scour around cylindrical piers. J Hydraul Res 15(3):211–252

    Google Scholar 

  44. Breusers HNC, Raudkivi AJ (1991) Scouring. Balkema, Rotterdam, The Netherlands

  45. Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks (No. RSRE-MEMO-4148). Royal Signals and Radar Establishment Malvern (United Kingdom)

  46. Campanella RG, Robertson PK, Davies MP, Sy A (1989) Use of in situ tests in pile design. In: Proceedings 12th international conference on soil mechanics and foundation engineering, ICSMFE, Rio de Janeiro, Brazil. pp 199–203

  47. Cardoso AH, Bettess R (1999) Effects of time and channel geometry on scour at bridge abutments. J Hydraul Eng 125:388–399

    Google Scholar 

  48. Chabert J (1956) Etude des affouillements autour des piles de ponts. Rep. Natl. Hydraul Lab., Chatou

  49. Chatterjee SS, Ghosh SN, Chatterjee M (1994) Local scour due to submerged horizontal jet. J Hydraul Eng 120:973–992. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:8(973)

    Article  Google Scholar 

  50. Chee RKW (1982) Live-bed scour at bridge piers. Publ. Auckl. Univ, New Zeal

    Google Scholar 

  51. Cheng L, Yeow K, Zang Z, Li F (2014) 3D scour below pipelines under waves and combined waves and currents. Coast Eng 83:137–149

    Google Scholar 

  52. Cheng M-Y, Cao M-T, Wu Y-W (2015) Predicting equilibrium scour depth at bridge piers using evolutionary radial basis function neural network. J Comput Civ Eng. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000380

    Article  Google Scholar 

  53. Cheng MY, Cao MT (2015) Hybrid intelligent inference model for enhancing prediction accuracy of scour depth around bridge piers. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2014.939089

    Article  Google Scholar 

  54. Chiew Y-M (1992) Scour protection at bridge piers. J Hydraul Eng 118:1260–1269

    Google Scholar 

  55. Chinnarasri C, Kositgittiwong D (2008) Laboratory study of maximum scour depth downstream of sills. In: Proceedings of the institution of civil engineers-water management. Thomas Telford Ltd, pp 267–275

  56. Choi SU, Choi B, Lee S (2017) Prediction of local scour around bridge piers using the ANFIS method. Neural Comput Appl 28:335–344. https://doi.org/10.1007/s00521-015-2062-1

    Article  Google Scholar 

  57. Chou JS, Pham AD (2017) Nature-inspired metaheuristic optimization in least squares support vector regression for obtaining bridge scour information. Inf Sci (Ny). https://doi.org/10.1016/j.ins.2017.02.051

    Article  Google Scholar 

  58. Coleman SE (2005) Clearwater local scour at complex piers. J Hydraul Eng 131:330–334

    Google Scholar 

  59. Coleman SE, Lauchlan CS, Melville BW (2003) Clear-water scour development at bridge abutments. J Hydraul Res 41:521–531

    Google Scholar 

  60. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  61. D’agostino V (1994) Indagine sullo scavo a valle di opere trasversali mediante modello fisico a fondo mobile. L’Energia Elettr 71:37–51

    Google Scholar 

  62. D’Agostino V, Ferro V (2004) Scour on alluvial bed downstream of grade-control structures. J Hydraul Eng 130(1):24–37

    Google Scholar 

  63. Damle PM, Venkatraman CP, Desai SC (1966) Evaluation of scour below ski-jump buckets of spillways. In: CWPRS golden jubilee symposia. pp 154–163

  64. Danandeh Mehr A, Nourani V, Kahya E, Hrnjica B, Sattar AMA, Yaseen ZM (2018) Genetic programming in water resources engineering: a state-of-the-art review. J Hydrol. https://doi.org/10.1016/j.jhydrol.2018.09.043

    Article  Google Scholar 

  65. Dargahi B (1990) Controlling mechanism of local scouring. J Hydraul Eng 116:1197–1214. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:10(1197)

    Article  Google Scholar 

  66. Debnath K, Chaudhuri S (2010) Laboratory experiments on local scour around cylinder for clay and clay–sand mixed beds. Eng Geol 111:51–61

    Google Scholar 

  67. Dey S, Barbhuiya AK (2005) Time variation of scour at abutments. J Hydraul Eng 131:11–23

    Google Scholar 

  68. Dey S, Barbhuiya AK (2004) Clear-water scour at abutments in thinly armored beds. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(622)

    Article  Google Scholar 

  69. Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121:869–876

    Google Scholar 

  70. Dey S, Raikar RV (2005) Scour in long contractions. J Hydraul Eng 131:1036–1049

    Google Scholar 

  71. Dey S, Sarkar A (2006) Scour downstream of an apron due to submerged horizontal jets. J Hydraul Eng 132:246–257

    Google Scholar 

  72. Dey S, Singh NP (2008) Clear-water scour below underwater pipelines under steady flow. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(588)

    Article  Google Scholar 

  73. Dey S, Singh NP (2007) Clear-water scour depth below underwater pipelines. J. Hydro Environ Res. https://doi.org/10.1016/j.jher.2007.07.001

    Article  Google Scholar 

  74. Dey S, Sumer BM, Fredsøe J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:3(270)

    Article  Google Scholar 

  75. Dongguang G, Pasada L, Nordin CF (1993) Pier scour equations used in the People’s Republic of China: review and summary. United States. Federal Highway Administration. Office of Technology Applications

  76. Ebtehaj I, Bonakdari H, Moradi F, Gharabaghi B, Khozani ZS (2018) An integrated framework of extreme learning machines for predicting scour at pile groups in clear water condition. Coast Eng. https://doi.org/10.1016/j.coastaleng.2017.12.012

    Article  Google Scholar 

  77. Ebtehaj I, Sattar AMA, Bonakdari H, Zaji AH (2017) Prediction of scour depth around bridge piers using self-adaptive extreme learning machine. J. Hydroinformatics 19:207–224. https://doi.org/10.2166/hydro.2016.025

    Article  Google Scholar 

  78. Eghbalzadeh A, Hayati M, Rezaei A, Javan M (2018) Prediction of equilibrium scour depth in uniform non-cohesive sediments downstream of an apron using computational intelligence. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2016.1179677

    Article  Google Scholar 

  79. Elshafie A, Karim OA, Taha MR (2009) Non-Linear prediction model for scour and air entrainment based static neural network approach. Eur J Sci Res 27(3):400–416

    Google Scholar 

  80. Etemad-Shahidi A, Bonakdar L, Jeng D-S (2015) Estimation of scour depth around circular piers: applications of model tree. J Hydroinf. https://doi.org/10.2166/hydro.2014.151

    Article  Google Scholar 

  81. Etemad-Shahidi A, Ghaemi N (2011) Model tree approach for prediction of pile groups scour due to waves. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2011.07.012

    Article  Google Scholar 

  82. Ettema R (1980) Scour at bridge piers. No. 216 Monograph. University of Auckland, Auckland, New Zealand

  83. Ettema R, Melville BW, Barkdoll B (1998) Scale effect in pier-scour experiments. J Hydraul Eng 124:639–642

    Google Scholar 

  84. Falciai M, Giacomin A (1978) Indagine sui gorghi che si formano a valle delle traverse torrentizie. Ital For Mont 23:111–123

    Google Scholar 

  85. Farhoudi J (1979) Scaling relationships for local scour downstream of stilling basins (Doctoral dissertation, Southampton University)

  86. Farhoudi J, Hosseini SM, Sedghi-Asl M (2010) Application of neuro-fuzzy model to estimate the characteristics of local scour downstream of stilling basins. J Hydroinf. https://doi.org/10.2166/hydro.2009.069

    Article  Google Scholar 

  87. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI magazine 17(3):37–37

  88. Feng C-W, Ju S-H, Huang H-Y, Chang P-S (2011) Using genetic algorithms to estimate the scour depth around the bridge pier. In: Proceedings of the 28th international symposium on automation and robotics in construction, ISARC 2011

  89. Ferreira C, Gepsoft U (2008) What is gene expression programming. Idea group publishing, London, pp 82–84

  90. Finno RJ (1989) Subsurface conditions and pile installation data. 1989 foundation engineering congress test section. Geotech Spec Publ (23):1–74

  91. Firat M (2009) Scour depth prediction at bridge piers by Anfis approach. Proc ICE Water Manag. https://doi.org/10.1680/wama.2009.00061

    Article  Google Scholar 

  92. Firat M, Gungor M (2009) Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers. Adv Eng Softw. https://doi.org/10.1016/j.advengsoft.2008.12.001

    Article  MATH  Google Scholar 

  93. Fowler JE (1992) Scour problems and methods for prediction of maximum scour at vertical seawalls. Coastal Engineering Research Center Vicksburg MS, Vicksburg

    Google Scholar 

  94. Franzetti S, Radice A, Rabitti M, Rossi G (2010) Hydraulic design and preliminary performance evaluation of countermeasure against debris accumulation and resulting local pier scour on River Po in Italy. J Hydraul Eng 137:615–620

    Google Scholar 

  95. Froehlich DC (1989) Local scour at bridge abutments. In: Proceedings of the 1989 national conference on hydraulic engineering. pp 13–18

  96. Fujail AKM, Begum SA, Barbhuiya AK (2015) Neuro-genetic approach to predict scour depth around vertical bridge abutment. Adv Intell Syst Comput. https://doi.org/10.1007/978-81-322-2217-0_13

    Article  Google Scholar 

  97. Ghazanfari-Hashemi S, Etemad-Shahidi A, Kazeminezhad MH, Mansoori AR (2011) Prediction of pile group scour in waves using support vector machines and ANN. J Hydroinf. https://doi.org/10.2166/hydro.2010.107

    Article  Google Scholar 

  98. Ghodsian M, Faradonbeh AA (2001) Effect of sediment gradation on scour below free over fall spillway. In: Proceedings of 3rd international symposium on environmental hydraulics. ISEH Tempe, Arizona (on CD‐ROM)

  99. Ghodsian M, Melville B, Tajkarimi D (2006) Local scour due to free overfall jet. In: Proceedings of the institution of civil engineers-water management. Thomas Telford Ltd, pp 253–260

  100. Gill MA (1981) Bed erosion in rectangular long contraction. J Hydraul Div 107:273–284

    Google Scholar 

  101. Goel A, Pal M (2009) Application of support vector machines in scour prediction on grade-control structures. Eng Appl Artif Intell 22:216–223. https://doi.org/10.1016/j.engappai.2008.05.008

    Article  Google Scholar 

  102. Goyal MK, Ojha CSP, Karbasi M, Azamathulla HMM, Guven A, Azamathulla HMM, Najafzadeh M, Tafarojnoruz A, Lim SY, Azamathulla HMM, Deo MC, Deolalikar PB, Najafzadeh M, Sharafi H, Ebtehaj I, Bonakdari H, Zaji AH, Guven A, Gunal M, Mesbahi M, Talebbeydokhti N, Hosseini S, Afzali S, Onen F, Najafzadeh M, Lim SY, Guven A, Asce M, Gunal M, Uyumaz A, Altunkaynak A, Özger M, Najafzadeh M, Tafarojnoruz A, Goel A, Pal M (2016) Estimation of scour downstream of a ski-jump bucket using support vector and M5 model tree. J Hydraul Eng. https://doi.org/10.1007/s11269-011-9801-6

    Article  Google Scholar 

  103. Graf WH (1995) Load scour around piers. Annu. Report., Lab. Rech. Hydraul. Ec. Polytech. Fed. Lausanne, Lausanne, Switzerland, pp B

  104. Guven A (2011) A multi-output descriptive neural network for estimation of scour geometry downstream from hydraulic structures. Adv Eng Softw 42:85–93. https://doi.org/10.1016/j.advengsoft.2010.12.005

    Article  MATH  Google Scholar 

  105. Guven A, Asce M, Gunal M (2008) Genetic programming approach for prediction of local scour downstream of hydraulic structures. J Irrig Drain Eng 134:241–249

    Google Scholar 

  106. Guven A, Azamathulla HM (2012) Gene-expression programming for flip-bucket spillway scour. Water Sci Technol 65:1982–1987

    Google Scholar 

  107. Guven A, Azamathulla HM, Zakaria NA (2009) Linear genetic programming for prediction of circular pile scour. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2009.05.010

    Article  Google Scholar 

  108. Haghiabi AH (2017) Estimation of scour downstream of a ski-jump bucket using the multivariate adaptive regression splines. Sci Iran 24(4):1789–1801

    Google Scholar 

  109. Haghiabi AH (2017) Prediction of river pipeline scour depth using multivariate adaptive regression splines. J Pipeline Syst Eng Pract. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000248

    Article  Google Scholar 

  110. Hamidifar H, Omid MH, Nasrabadi M (2011) Scour downstream of a rough rigid apron. World Appl Sci J 14:1169–1178

    Google Scholar 

  111. Hancu S (1971) Sur le calcul des affouillements locaux dams la zone des piles des ponts. In: Proceedings of the 14th IAHR congress, Paris, France. pp 299–313

  112. Hannah CR (1978) Scour at pile groups. Research Rep. No. 28-3

  113. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  114. Hosseini K, Karami H, Hosseinjanzadeh H, Ardeshir A (2016) Prediction of time-varying maximum scour depth around short abutments using soft computing methodologies—a comparative study. KSCE J Civ Eng. https://doi.org/10.1007/s12205-015-0115-8

    Article  Google Scholar 

  115. Hosseini R, Fazloula R, Saneie M, Amini A (2017) Bagged neural network for estimating the scour depth around pile groups. Int J River Basin Manag. https://doi.org/10.1080/15715124.2017.1372449

    Article  Google Scholar 

  116. Huang HY, Chou WY, Ju SH, Feng CW (2012) Application of finite element method and genetic algorithms in Bridge Scour Detection Society for Social Management Systems Internet Journal, Society for Social Management Systems, Kochi, Japan

  117. Ismail A, Jeng DS, Zhang LL, Zhang JS (2013) Predictions of bridge scour: application of a feed-forward neural network with an adaptive activation function. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2012.12.011

    Article  Google Scholar 

  118. Ivakhnenko AG (1968) The group method of data handling (GMDH). Automation 3:57–83

    Google Scholar 

  119. Jackson KS (1996) Evaluation of bridge-scour data at selected sites in Ohio. vol 97, no. 4182. US Department of the Interior, US Geological Survey

  120. Jain SC, Fischer EE (1979) Scour around circular bridge piers at high Froude numbers

  121. Jang J-S (1996) Input selection for ANFIS learning. In: 1996., Proceedings of the fifth IEEE international conference on fuzzy systems. pp 1493–1499

  122. Jang J-S (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665–685

    Google Scholar 

  123. Jang J (1991) Fuzzy modeling using generalized neural networks and kalman filter algorithm. In: Proceedings of 9th national conference on artificial intelligence

  124. Johari A, Nakhaee M (2013) Maximum lateral displacement prediction of bored pile wall in granular soil using Gene Expression Programming. National Congress on Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran

  125. Kambekar AR, Deo MC (2003) Estimation of pile group scour using neural networks. Appl Ocean Res. https://doi.org/10.1016/j.apor.2003.06.001

    Article  Google Scholar 

  126. Karami H, Ardeshir A, Saneie M, Salamatian SA (2012) Prediction of time variation of scour depth around spur dikes using neural networks. J Hydroinf 14:180–191

    Google Scholar 

  127. Karbasi M, Azamathulla HM (2017) Prediction of scour caused by 2D horizontal jets using soft computing techniques. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2016.04.001

    Article  Google Scholar 

  128. Kazeminezhad MH, Etemad-Shahidi a, Yeganeh Bakhtiary a (2010) An alternative approach for investigation of the wave-induced scour around pipelines. J Hydroinf. https://doi.org/10.2166/hydro.2010.042

    Article  Google Scholar 

  129. Keshavarzi A, Gazni R, Homayoon SR (2012) Prediction of scouring around an arch-shaped bed sill using neuro-fuzzy model. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2011.08.019

    Article  Google Scholar 

  130. Keshavarzi A, Noori LK (2010) Environmental protection stability of river bed and banks using convex, concave, and linear bed sills. Environ Monit Assess 171:621–631

    Google Scholar 

  131. Khan M, Azamathulla HM, Tufail M, Ab Ghani A (2012) Bridge pier scour prediction by gene expression programming. Proc Inst Civ Eng Water Manag. https://doi.org/10.1680/wama.11.00008

    Article  Google Scholar 

  132. Khan M, Tufail M, Ajmal M, Haq ZU, Kim TW (2017) Experimental analysis of the scour pattern modeling of scour depth around bridge piers. Arab J Sci Eng. https://doi.org/10.1007/s13369-017-2599-7

    Article  Google Scholar 

  133. Khatsuria RM (1992) State of art on computation prediction and analysis of scour in rocky beds downstream of ski-jump spillways. Government of India, Ministry of Water Resources, Central Water and Power Research Station

  134. Kim KH, Kim HH, Oh HS, Yeun JH (2005) Characteristics of the local scour around submarine imbedded pipelines due to waves. J Kor Soc Coast Ocean Eng 17:106–118

    Google Scholar 

  135. Komura S (1966) Equilibrium depth of scour in long constrictions. J Hydraul Div 92:17–37

    Google Scholar 

  136. Kothyari UC, Garde RCJ, Ranga Raju KG (1992) Temporal variation of scour around circular bridge piers. J Hydraul Eng 118:1091–1106

    Google Scholar 

  137. Lagasse PF, Zevenbergen LW, Clopper PE (2010) Impacts of debris on bridge pier scour. In: International Conference on Scour and Erosion 2010 (ICSE-5), 7–10 November, San Francisco, CA, USA

  138. Landers M, Mueller D (1996) Evaluation of selected pier-scour equations using field data. Transp Res Rec J Transp Res Board 1523(1):186–195

  139. Landers MN, Mueller DS, Richardson EV (1991) US Geological Survey field measurements of pier scour. In: Stream Stability and Scour at Highway Bridges: Compendium of Stream Stability and Scour Papers Presented at Conferences Sponsored by the Water Resources Engineering (Hydraulics) Division of the American Society of Civil Engineers. ASCE, pp 585–607

  140. Lauchlan CS, Melville BW (2001) Riprap protection at bridge piers. J Hydraul Eng 127:412–418

    Google Scholar 

  141. Laursen EM (1963) An analysis of relief bridge scour. J Hydraul Div 89:93–118

    Google Scholar 

  142. Laursen EM, Toch A (1956) Scour around bridge piers and abutments. Iowa Highway Research Board Ames, IA, Iowa

    Google Scholar 

  143. Lee K-H, Mizutani N (2008) Experimental study on scour occurring at a vertical impermeable submerged breakwater. Appl Ocean Res 30:92–99

    Google Scholar 

  144. Lee TL, Jeng DS, Zjang GH, Hong JH (2007) Neural network modeling for estimation of scour depth around bridge piers. J Hydrodyn. https://doi.org/10.1016/S1001-6058(07)60073-0

    Article  Google Scholar 

  145. Legates DR, Mccabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241

    Google Scholar 

  146. Lenzi MA, Comiti F (2003) Local scouring and morphological adjustments in steep channels with check-dam sequences. Geomorphology. https://doi.org/10.1016/S0169-555X(03)00134-X

    Article  Google Scholar 

  147. Lenzi Mario A, Comiti F (2003) Local scouring and morphological adjustments in steep channels with check-dam sequences. Geomorphology 55:97–109

    Google Scholar 

  148. Lim SY (1993) Clear water scour in long contractions. Proc Inst Civ Eng Marit Energy 101:93–98

    Google Scholar 

  149. Lu J-Y, Shi Z-Z, Hong J-H, Lee J-J, Raikar RV (2011) Temporal variation of scour depth at nonuniform cylindrical piers. J Hydraul Eng 137:45–56. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000272

    Article  Google Scholar 

  150. Lucassen R (1984) Scour underneath submarine pipelines. TU Delft, Civil Engineering and Geosciences, Hydraulic Engineering

  151. Mahboobi E (1997) The effect of sediment size on maximum scour depth in plunge pool. (Unpubl. master’s thesis). Univ. Sci. Technol. Tehran, Iran

  152. Marion A, Lenzi MA, Comiti F (2004) Effect of sill spacing and sediment size grading on scouring at grade-control structures. Earth Surf Process Landforms J Br Geomorphol Res Gr 29:983–993

    Google Scholar 

  153. Martins RBF (1975) Scouring of rocky river beds by free jet spillways. Int Water Power Dam Constr 27:152–153

    Google Scholar 

  154. Melville B, Chiew Y (1999) Time scale for local scour at bridge piers. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59)

    Article  Google Scholar 

  155. Melville BW (1997) Pier and abutment scour: integrated approach. J Hydraul Eng. https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(769)

    Article  Google Scholar 

  156. Melville BW, Dongol DM (1992) Bridge pier scour with debris accumulation. J Hydraul Eng 118:1306–1310

    Google Scholar 

  157. Mia MF, Nago H (2003) Design method of time-dependent local scour at circular bridge pier. J Hydraul Eng 129:420–427

    Google Scholar 

  158. Moghadam MJ, Farsangi MAE, Mansouri H, Nezamabadi H (2006) Muck-pile fragmentation prediction using artificial neural networks. J Mines Met Fuels 54(12):421–423

    Google Scholar 

  159. Mohamed A, Hamdi MS, Tahar S (2016) A hybrid intelligent approach for metal-loss defect depth prediction in oil and gas pipelines. Stud Comput Intell. https://doi.org/10.1007/978-3-319-33386-1_1

    Article  Google Scholar 

  160. Mohamed TA, Noor M, Ghazali AH, Huat BBK (2005) Validation of some bridge pier scour formulae using field and laboratory data. Am J Environ Sci 1:119–125

    Google Scholar 

  161. Mohammadpour R, Ab Ghani A, Azamathulla HM (2013) Prediction of equilibrium scour time around long abutments. Proc Inst Civ Eng Water Manag. https://doi.org/10.1680/wama.11.00075

    Article  Google Scholar 

  162. Mohammadpour R, Ghani AA, Azamathulla HM (2013) Estimation of dimension and time variation of local scour at short abutment. Int J River Basin Manag. https://doi.org/10.1080/15715124.2013.772522

    Article  Google Scholar 

  163. Moncada-M AT, Aguirre-Pe J, Below C, Moncada-m RBAT (1999) Scour below pipeline in river crossings. J Hydraul Eng. https://doi.org/10.1061/(asce)0733-9429(1999)125:9(953)

    Article  Google Scholar 

  164. Mossa M (1998) Experimental study on the scour downstream of grade-control structures In: Proceedings of 26th Convegno di Idraul. e Costr. Idraul. Catania 3, 581–594

  165. Mousavi ME, Bakhtiary AY, Enshaei N (2009) The equivalent depth of wave-induced scour around offshore pipelines. J Offshore Mech Arct Eng. https://doi.org/10.1115/1.3058681

    Article  Google Scholar 

  166. Moussa YAM (2013) Modeling of local scour depth downstream hydraulic structures in trapezoidal channel using GEP and ANNs. Ain Shams Eng J. https://doi.org/10.1016/j.asej.2013.04.005

    Article  Google Scholar 

  167. Mueller DS, Wagner CR (2005) Field observations and evaluations of streambed scour at bridges (No. FHWA-RD-03-052). United States. Federal Highway Administration. Office of Research, Development, and Technology

  168. Muzzammil M, Alam J (2016) Scour Prediction at the control structures using adaptive neuro-fuzzy inference system. IWRA (India) Journal (Half Yearly Technical Journal of Indian Geographical Committee of IWRA), 5(2):22–30

  169. Muzzammil M, Alama J, Danish M (2015) Scour prediction at bridge piers in cohesive bed using gene expression programming. Aquat Procedia. https://doi.org/10.1016/j.aqpro.2015.02.098

    Article  Google Scholar 

  170. Najafzadeh M (2016) Neurofuzzy-based GMDH-PSO to predict maximum scour depth at equilibrium at culvert outlets. J Pipeline Syst Eng Pract 7:06015001. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000204

    Article  Google Scholar 

  171. Najafzadeh M (2015) Neuro-fuzzy GMDH systems based evolutionary algorithms to predict scour pile groups in clear water conditions. Ocean Eng 99:85–94. https://doi.org/10.1016/j.oceaneng.2015.01.014

    Article  Google Scholar 

  172. Najafzadeh M, Barani G-A (2013) Discussion of “genetic programming to predict river pipeline scour” by H. Md. Azamathulla and Aminuddin Ab Ghani. J Pipeline Syst Eng Pract. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000146

    Article  Google Scholar 

  173. Najafzadeh M, Barani G-A, Hessami Kermani MR (2014) Estimation of pipeline scour due to waves by GMDH. J Pipeline Syst Eng Pract. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000171

    Article  Google Scholar 

  174. Najafzadeh M, Barani GA, Hessami-Kermani MR (2015) Evaluation of GMDH networks for prediction of local scour depth at bridge abutments in coarse sediments with thinly armored beds. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2015.05.016

    Article  Google Scholar 

  175. Najafzadeh M, Barani GA, Hessami-Kermani MR (2013) Group method of data handling to predict scour depth around vertical piles under regular waves. Sci Iran. https://doi.org/10.1016/j.scient.2013.04.005

    Article  Google Scholar 

  176. Najafzadeh M, Barani GA, Hessami Kermani MR (2013) GMDH based back propagation algorithm to predict abutment scour in cohesive soils. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2012.12.006

    Article  Google Scholar 

  177. Najafzadeh Mohammad, Etemad-Shahidi A, Lim SY (2016) Scour prediction in long contractions using ANFIS and SVM. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2015.10.053

    Article  Google Scholar 

  178. Najafzadeh M, Rezaie Balf M, Rashedi E (2016) Prediction of maximum scour depth around piers with debris accumulation using EPR, MT, and GEP models. J Hydroinf. https://doi.org/10.2166/hydro.2016.212

    Article  Google Scholar 

  179. Najafzadeh M, Saberi-Movahed F (2018) GMDH-GEP to predict free span expansion rates below pipelines under waves. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2018.1443355

    Article  Google Scholar 

  180. Najafzadeh M, Saberi-Movahed F, Sarkamaryan S (2018) NF-GMDH-Based self-organized systems to predict bridge pier scour depth under debris flow effects. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2017.1355944

    Article  Google Scholar 

  181. Najafzadeh M, Sarkamaryan S (2018) Extraction of optimal equations for evaluation of pipeline scour depth due to currents. Proc Inst Civ Eng Marit Eng. https://doi.org/10.1680/jmaen.2017.10

    Article  Google Scholar 

  182. Najafzadeh M, Shiri J, Rezaie-Balf M (2018) New expression-based models to estimate scour depth at clear water conditions in rectangular channels. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2017.1303009

    Article  Google Scholar 

  183. Najafzadeh M, Tafarojnoruz A, Lim SY (2017) Prediction of local scour depth downstream of sluice gates using data-driven models. ISH J Hydraul Eng 23:195–202. https://doi.org/10.1080/09715010.2017.1286614

    Article  Google Scholar 

  184. Namekar S, Kambekar AR, Deo MC (2005) Neural networks to predict scour of piles in the sea. In: Proceedings of the 2nd Indian international conference on artificial intelligence, IICAI 2005

  185. Noori R, Hooshyaripor F (2014) Effective prediction of scour downstream of ski-jump buckets using artificial neural networks. Water Resour. https://doi.org/10.1134/S0097807814010096

    Article  Google Scholar 

  186. O’Neill MW (1988) Pile group prediction symposium-summary of prediction results. FHWA, Draft Rep

  187. Oliveto G, Hager WH (2002) Temporal evolution of clear-water pier and abutment scour. J Hydraul Eng 128:811–820

    Google Scholar 

  188. Onen F (2014) Prediction of penetration depth in a plunging water jet using soft computing approaches. Neural Comput Appl. https://doi.org/10.1007/s00521-013-1475-y

    Article  Google Scholar 

  189. Onen F (2014) GEP prediction of scour around a side weir in curved channel. J Environ Eng Landsc Manag. https://doi.org/10.3846/16486897.2013.865632

    Article  Google Scholar 

  190. Pagliara S, Carnacina I (2010) Influence of wood debris accumulation on bridge pier scour. J Hydraul Eng 137:254–261

    Google Scholar 

  191. Pal M, Singh NK, Tiwari NK (2012) M5 model tree for pier scour prediction using field dataset. KSCE J Civ Eng 16:1079–1084

    Google Scholar 

  192. Pal M, Singh NK, Tiwari NK (2011) Support vector regression based modeling of pier scour using field data. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2010.11.002

    Article  Google Scholar 

  193. Pankaj G (2013) Evaluation of scour depth around bridge piers. Guwahati University, Guwahati

  194. Park JH, Sok C, Park CK, Do Kim Y (2016) A study on the effects of debris accumulation at sacrificial piles on bridge pier Scour: I. Experimental results. KSCE J Civ Eng 20:1546–1551

    Google Scholar 

  195. Pourzangbar Ali, Brocchini M, Saber A, Mahjoobi J, Mirzaaghasi M, Barzegar M (2017) Prediction of scour depth at breakwaters due to non-breaking waves using machine learning approaches. Appl Ocean Res 00:00. https://doi.org/10.1016/j.apor.2017.01.012

    Article  Google Scholar 

  196. Pourzangbar A, Saber A, Yeganeh-Bakhtiary A, Ahari LR (2017) Predicting scour depth at seawalls using GP and ANNs. J Hydroinf. https://doi.org/10.2166/hydro.2017.125

    Article  Google Scholar 

  197. Pu Q, Li K, Gao F (2001) Scour of the seabed under a pipeline in oscillating flow. China Ocean Eng 15:129–138

    Google Scholar 

  198. Rajaratnam N, Nwachukwu BA (1983) Flow near groin-like structures. J Hydraul Eng 109:463–480

    Google Scholar 

  199. Robert C (2012) Machine learning: a probabilistic perspective. MIT press

  200. Roushangar K, Akhgar S, Erfan A, Shiri J (2016) Modeling scour depth downstream of grade-control structures using data driven and empirical approaches. J Hydroinf. https://doi.org/10.2166/hydro.2016.242

    Article  Google Scholar 

  201. Sadeghiamirshahidi M, Eslam Kish T, Doulati Ardejani F (2013) Application of artificial neural networks to predict pyrite oxidation in a coal washing refuse pile. Fuel. https://doi.org/10.1016/j.fuel.2012.10.016

    Article  Google Scholar 

  202. Samadi M, Jabbari E, Azamathulla HM (2014) Assessment of M5′ model tree and classification and regression trees for prediction of scour depth below free overfall spillways. Neural Comput Appl 24:357–366

    Google Scholar 

  203. Sarshari E, Mullhaupt P (2015) Application of Artificial Neural Networks in Assessing the Equilibrium Depth of Local Scour Around Bridge Piers. In: ASME 2015 34th international conference on ocean, offshore and arctic engineering. American Society of Mechanical Engineers, p V007T06A061–V007T06A061

  204. Sattar AMA, Plesiński K, Radecki-Pawlik A, Gharabaghi B (2017) Scour depth model for grade-control structures. J Hydroinf. https://doi.org/10.2166/hydro.2017.149

    Article  Google Scholar 

  205. Sen P (1984) Spillway scour and design of plunge pool. Water Energy Int 41(1):51–68

    Google Scholar 

  206. Sharafati A, Yasa R, Azamathulla HM (2018) Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. J Pipeline Syst Eng Pract 9:4018024

    Google Scholar 

  207. Sharafi H, Ebtehaj I, Bonakdari H, Zaji AH (2016) Design of a support vector machine with different kernel functions to predict scour depth around bridge piers. Nat Hazards 84:2145–2162. https://doi.org/10.1007/s11069-016-2540-5

    Article  Google Scholar 

  208. Shcherbakov MV, Brebels A, Shcherbakova NL, Tyukov AP, Janovsky TA, Kamaev VA (2013) A survey of forecast error measures. World Appl Sci J 24:171–176

    Google Scholar 

  209. Shen HW, Schneider VR (1969) Local scour around bridge piers. J Hydraul Div Proc Am Soc Civ Eng 95(HY6):1919–1940

    Google Scholar 

  210. Sheppard DM, Odeh M, Glasser T (2004) Large scale clear-water local pier scour experiments. J Hydraul Eng 130:957–963

    Google Scholar 

  211. Shin JH, Park HI (2010) Neural network formula for local scour at piers using field data. Mar Georesour Geotechnol. https://doi.org/10.1080/10641190903263054

    Article  Google Scholar 

  212. Spurr KJW (1985) Energy approach to estimating scour downstream of a large dam. Int Water Power Dam Constr 37:81–89

    Google Scholar 

  213. Sreedhara BM, Rao M, Mandal S (2018) Application of an evolutionary technique (PSO–SVM) and ANFIS in clear-water scour depth prediction around bridge piers. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3570-6

    Article  Google Scholar 

  214. Sumer BM, Fredsoe J (2002) Time scale of scour around a large vertical cylinder in waves. In: Proceedings of twelfth international offshore and polar engineering conference, vol 2

  215. Sumer BM, Fredsøe J (2000) Experimental study of 2D scour and its protection at a rubble-mound breakwater. Coast Eng 40:59–87

    Google Scholar 

  216. Sumer BM, Fredsøe J (1998) Wave scour around group of vertical piles. J Waterw Port Coast Ocean Eng 124:248–256

    Google Scholar 

  217. Sumer BM, Fredsøe J (1998) Wave scour around group of vertical piles. J Waterw Port Coastal Ocean Eng. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:5(248)

    Article  Google Scholar 

  218. Sumer BM, Fredsøe J (1990) Scour below pipelines in waves. J Waterw Port Coastal Ocean Eng. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:3(307)

    Article  Google Scholar 

  219. Sumer BM, Fredsøe J, Christiansen N (1992) Scour around vertical pile in waves. J. Waterw Port Coast Ocean Eng 118:15–31

    Google Scholar 

  220. Sumer BM, Hatipoglu F, Fredsøe J (2007) Wave scour around a pile in sand, medium dense, and dense silt. J Waterw Port Coastal Ocean Eng. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:1(14)

    Article  Google Scholar 

  221. Sung-Uk C, Sanghwa C (2007) Prediction of local scour around bridge piers using artificial neural networks1. Jawra J Am Water Resour Assoc. https://doi.org/10.1111/j.1752-1688.2006.tb03852.x

    Article  Google Scholar 

  222. Sutherland J, Obhrai C, Whitehouse RJS, Pearce AMC (2006) Laboratory tests of scour at a seawall. In: Proceedings 3rd international conference on scour and erosion, CURNET, Gouda, The Netherlands. Technical University of Denmark

  223. Toth E (2015) Asymmetric error functions for reducing the underestimation of local scour around bridge piers: application to neural networks models. J Hydraul Eng. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000981

    Article  Google Scholar 

  224. Tregnaghi M (2008) Local scouring at bed sills under steady and unsteady conditions. PhD thesis, University of Padova, p 161

  225. Tsai C-P, Chen H-B, You S-S (2009) Toe scour of seawall on a steep seabed by breaking waves. J Waterw Port Coast Ocean Eng 135:61–68

    Google Scholar 

  226. Vanoni VA, Brooks NH (1975) Sedimentation engineering. In: Manuals and Reports on Engineering Practice, vol 54. ASCE, New York, p 99

  227. Veronese A (1937) Erosion of a bed downstream from an outlet. Color. A M Coll. Fort Collins, United States

  228. Wang CY, Shih HP, Hong JH, Raikar RV (2013) Prediction of bridge pier scour using genetic programming. J Mar Sci Technol. https://doi.org/10.6119/JMST-013-0523-1

    Article  Google Scholar 

  229. Webby MG (1984) General scour at contraction. RRU Bull 73:109–118

    Google Scholar 

  230. Willmott CJ (1981) On the validation of models. Phys Geogr. https://doi.org/10.1080/02723646.1981.10642213

    Article  MATH  Google Scholar 

  231. Wilson Jr. KV (1995) Scour at selected bridge sites in Mississippi. US Geological Survey; Earth Science Information Center, Open-File Reports Section [distributor]

  232. Wu CM (1973) Scour at downstream end of dams in Taiwan. In: International symposium on river mechanics, vol I. no 13. Bangkok, Thailand, pp 1–6

  233. Xie SL (1981) Scouring pattern in front of vertical breakwaters and their influence on the stability of the foundation of the breakwaters. Report. Delft (Netherlands): Department of Civil Engineering, Delft University of Technology, p 61

  234. Yang XS (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley

  235. Yanmaz AM, Altinbilek HD g ˇ an (1991) Study of time-depenbent local scour around bridge piers. J Hydraul Eng 117:1247–1268

    Google Scholar 

  236. Yanmaz AM, Kose O (2007) Time-wise variation of scouring at bridge abutments. Sadhana 32:199–213

    Google Scholar 

  237. Yeo U-G, Gang J-G (1999) Field investigation of bridge scours in small and medium streams (2). J Kor Water Resour Assoc 32:49–59

    Google Scholar 

  238. Yildiz D, Uzucek E (1994) Prediction of scour depth from free falling flip bucket jets. Int Water Power Dam Constr 46:50–54

    Google Scholar 

  239. Yokoub NGR (1995) Effect of cohesion on bridge abutment scour. PhD thesis. Colorado State University, For Collins, Colorado

  240. Yousefpour N, Medina-Cetina Z, Jahedkar K, Delphia J, Briaud JL, Hurlebaus S, Tucker S, Everett M, Arjwech R (2011) Determination of unknown foundation of bridges for scour evaluation using artificial neural networks. In Geo-Frontiers 2011. Advances in Geotechnical Engineering, pp 1514–1523

  241. Yousefpour N, Medina-Cetina Z, Briaud J-L (2014) Evaluation of unknown foundations of bridge subjected to scour—physically driven artificial neural network approach. Transp Res Rec J Transp Res Board Transp Res Board Natl Acad. https://doi.org/10.3141/2433-04

    Article  Google Scholar 

  242. Zadeh AAT, Kashefipour SM (2008) Modeling local scour on loose bed downstream of grade-control structures using artificial neural network. J Appl Sci. https://doi.org/10.3923/jas.2008.2067.2074

    Article  Google Scholar 

  243. Zahiri A, Azamathulla HM Ghorbani KH (2014) Prediction of local scour depth downstream of bed sills using soft computing models. In: Computational intelligence techniques in earth and environmental sciences. Springer, Dordrecht, pp 197–208

  244. Zhang J, Shi B, Guo Y, Xu W, Yang K, Zhao E (2016) Scour development around submarine pipelines due to current based on the maximum entropy theory. J Ocean Univ China. https://doi.org/10.1007/s11802-016-3065-y

    Article  Google Scholar 

  245. Zhang Z, Zhang, Khelifi (2018) Multivariate time series analysis in climate and environmental research. Springer, Cham

  246. Zhao G, Sheppard DM (1999) The effect of flow skew angle on sediment scour near pile groups. In: Stream stability and scour at highway bridges: compendium of stream stability and scour papers presented at conferences sponsored by the Water Resources Engineering (Hydraulics) Division of the American Society of Civil Engineers. ASCE, pp 377–391

  247. Zounemat-Kermani M, Beheshti A-A, Ataie-Ashtiani B, Sabbagh-Yazdi S-R (2008) Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl Soft Comput 00:00. https://doi.org/10.1016/j.asoc.2008.09.006

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaher Mundher Yaseen.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Notations

Appendix: Notations

RBNN:

Radial Basis Neural Network

MLR:

Multiple Linear Regression

ERBFNN:

Hybrid of (RBFNN + Fuzzy Logic (FL) + Artificial Bee Colony)

FFBP:

Feed Forward Back Propagation

RBF:

Radial Basis Function

MNLR:

Multiple Non Linear Regression

GEP:

Genetic Expression Programming

GP:

Genetic Programing

SVM:

Support Vector Machine

SVR:

Support Vector Regression

GRNN:

General Regression Neural Network

MT:

Model Tree

ANFIS:

Adaptive Neuro Fuzzy Inference System

GA:

Genetic Algorithm

FE:

Finite Elements

GMDH:

Group Method of Data Handling

FFCC:

Feed Forward Computational Complexity Normalized

NRMSE:

Root Mean Square Error

E:

Efficiency

R 2 :

Coefficient of Determination

MAPE:

Mean Absolute Percent Error

RMSE:

Root-Mean-Square Error

AE:

Average Error

δ:

Average Absolute Deviation)

AAE:

Average Absolute Error

MAD:

Mean Absolute Deviation

R:

Correlation Coefficient

MPE:

Mean Percentage Error

RAE:

Relative Absolute Error

RSE:

Relative Squared Error

MAE:

Mean Absolute Error

SSE:

Sum of Squared Error

MSE:

Mean Squared Error

BIAS:

Mean Signed Error

POUE:

Percentages of Overall Under Estimation Error

ENS:

Nash–Sutcliffe Efficiency

SI:

Scatter Index

D & Ia:

Index of Agreement

MSRE:

Mean Squared Relative Error

MARE:

Mean Absolute Relative Error

NMB:

Normalized Mean Bias

SE:

Standard Error

CF:

Correlation Factor

AMRE:

Absolute Mean Relative Error

DR:

Discrepancy Ratio

Notation for empirical formulations:

  • Bridge

Ds: equilibrium scouring depth, b: diameter of bridge pier, Frcr: critical Froude number, y and y: flow depth, U: velocity, \(\alpha\): opening ration, \(\rho_{\text{g}}\): gravitational density, Fd: densiometric particle Froude number, T: dimensionless time, \(\sigma\): sediment non-uniformity, N: shape number, l: transverse length of abutment, q: discharge, KS: shape factor, Fr: Froude number, Re: Reynolds number.

  • G.C.S:

\({\varphi } = {\text{Submerged angle of repose of bed sediment}}\), \(\upgamma_{\text{s}} = {\text{Specific Weight of Sediment}}\) \(\upgamma = {\text{Specific Weight of water}}\) \({\text{Cd}} = {\text{Jet diffusion coefficient }}\) \({\text{y}}_{0}\) = Jet thickness entering in tail water \(\upbeta = {\text{jet angle}}\) \({\text{D}}_{\text{p}} = {\text{drop height of structures}}\) \({\text{h}} = {\text{tail water depth}}\), KC = The Keulegan–Carpenter q = discharge, Ucr = Critical velocity Re = Reynolds Number, Fr = Froude number, GS = Sediment specific gravity, Ucr = Critical velocity. d50 = median particle size

  • Pipelines:

e: gap between the pipes; D: pipe diameter, h = water depth, Fr = Froude number, GS = Sediment specific gravity, Ucr = Critical velocity. \(\theta_{cr}\) = critical shields number, KC = The Keulegan–Carpenter number \(\tau_{0}\) = shields number, d50 = median particle size q = discharge; Re: Reynolds Number

  • Piles:

H: water depth; Fr: Froude number, GS: Sediment specific gravity; Ucr: Critical velocity;\(\theta_{cr}\) = critical shields number; KC: The Keulegan–Carpenter number;\(\tau_{0}\): shields number; d50: median particle size, q: discharge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharafati, A., Haghbin, M., Motta, D. et al. The Application of Soft Computing Models and Empirical Formulations for Hydraulic Structure Scouring Depth Simulation: A Comprehensive Review, Assessment and Possible Future Research Direction. Arch Computat Methods Eng 28, 423–447 (2021). https://doi.org/10.1007/s11831-019-09382-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09382-4

Navigation