Skip to main content
Log in

Processing nanostructured materials: An overview

  • Overview
  • Processing For Properties
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article reviews a variety of processing techniques for preparing nanostructured materials. A bulk nanostructured material can be produced in two-step processes by preparing nanostructured powders with subsequent consolidation, or directly in one-step processes such as electrodeposition and crystallization of amorphous solids. Principles, characteristics, and potential of both one-step and two-step processes are discussed in this paper. Although those processes have been used to produce full-density samples with little or no grain growth, further improvements are required in order to produce parts large enough for most engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.C. Koch et al., “Ductility of Nanostructured Materials,” MRS Bull., 24 (2) (1999), pp. 54–58.

    CAS  Google Scholar 

  2. D. van Heerden, E. Zolotoyabko and D. Shechtman, “Microstructure and Strain in Electrodeposited Cu/Ni Multilayers,” J. Mater. Res., 11 (11) (1996), pp. 2825–2833.

    Article  Google Scholar 

  3. R.R. Oberle and R.C. Cammarata, “Dependence of Hardness on Modulation Amplitude in Electrodeposited Cu-Ni Compositionally Modulated Thin Films,” Scr. Metall. Mater., 32 (1995), p. 583.

    Article  CAS  Google Scholar 

  4. G. Palumbo, S.J. Thorpe, and K.T. Aust, “On the Contribution of Triple Junctions to the Structure and Properties of Nanocrystalline Materials,” Scr. Metall. Mater., 24 (1990), pp. 1347–1350.

    Article  CAS  Google Scholar 

  5. C. Cheung et al., “Electrodeposition of Nanocrystalline Ni-Fe Alloys,” Nanostruct. Mater., 5 (5) (1995), pp. 513–523.

    Article  CAS  Google Scholar 

  6. N. Wang et al., “Room Temperature Creep Behavior of Nanocrystalline Nickel Produced by an Electrodeposition Technique,” Mater. Sci. Eng., A237 (1997), pp. 150–158.

    Article  CAS  Google Scholar 

  7. D.M. Tench and J.T. White, “Tensile Properties of Nanostructured Ni-Cu Multilayered Materials Prepared by Electrodeposition,” J. Electrochem. Soc., 132 (2) (1991), pp. 3757–3758.

    Article  Google Scholar 

  8. L. Wang et al., “Growth Mechanism and Structure of Electrodeposited Cu/Ni Multilayers,” Thin Solid Films, 261 (1995), pp. 160–167.

    Article  CAS  Google Scholar 

  9. S. Menezes and D.P. Anderson, “Wavelength-Property Correlation in Electrodeposited Ultrastructured Cu-Ni Multilayers,” J. Electrochem. Soc., 137 (2) (1990), pp. 440–444.

    Article  CAS  Google Scholar 

  10. D.S. Lashmore and M.P. Dariel, “Electrodeposited Cu-Ni Textured Superlattices,” J. Electrochem. Soc., 135 (5) (1988), pp. 1218–1221.

    Article  CAS  Google Scholar 

  11. F. Ebrahimi and D. Kong, “Effect of Microstructure on Strength and Fracture of Electrodeposited Cu/Ni Layered Nano-Composites,” Scr. Mater., 40 (5) (1999), pp. 609–616.

    Article  CAS  Google Scholar 

  12. F. Ebrahimi et al., “Mechanical Properties of Nanocrystalline Nickel Produced by Electrodeposition,” Nanostruct. Mater., 11 (3) (1999), pp. 343–350.

    Article  CAS  Google Scholar 

  13. H. Ferkel, B. Muller and W. Riehemann, “Electrodeposition of Particle-Strengthened Nickel Films,” Mater. Sci. Eng., A234–236 (1997), pp. 474–476.

    Google Scholar 

  14. D. Tench and J. White, “Enhanced Tensile Strength for Electrodeposited Nickel-Copper Multilayer Composites,” Metall. Trans., 15A (11) (1984), pp. 2039–2040.

    CAS  Google Scholar 

  15. K. Lu, “Nanocrystalline Metals Crystallized from Amorphous Solids: Nanocrystallization, Structure and Properties,” Mater. Sci. Eng., R16 (4) (1996), pp. 161–221.

    Google Scholar 

  16. T.R. Haasz et al., “Intercrystalline Density of Nanocrystalline Nickel,” Scr. Metall. Mater., 32 (3) (1995), pp. 423–426.

    Article  CAS  Google Scholar 

  17. H. Kimura, “High-Strength Intermetallic TiAl Synthesized via High-Temperature Crystallization of the Amorphous Alloy,” Philos Mag., A73 (3) (1996), pp. 723–737.

    Google Scholar 

  18. M.L. Sui, S. Patu, and Y.Z. He, “Influence of Interfaces on the Mechanical Properties in Polycrystalline Ni-P Alloys with Ultrafine Grains,” Scr. Metall. Mater., 25 (1991), pp. 1537–1542.

    Article  CAS  Google Scholar 

  19. M. Xiao and Q. P. Kong, “Creep Behavior of a Nanocrystalline Fe-B-Si Alloy,” Scr. Mater., 36 (3) (1997), pp. 299–303.

    Article  CAS  Google Scholar 

  20. A.A. Popov et al., “Structural and Mechanical Properties of Nanocrystalline Titanium Processed by Severe Plastic Deformation,” Scr. Mater., 37 (7) (1997), pp. 1089–1094.

    Article  CAS  Google Scholar 

  21. R.Z. Valiev, “Structure and Mechanical Properties of Ultrafine-Grained Metals,” Mater. Sci. Eng., A234–236 (1997), pp. 59–66.

    Google Scholar 

  22. S. Ferrasse et al., “Microstructure and Properties of Copper and Aluminum Alloy 3003 Heavily Worked by Equal Channel Angular Extrusion,” Metall. Mater. Trans., 28A (1997), p. 1047.

    Article  CAS  Google Scholar 

  23. M. Kawazoe et al., “Elevated Temperature Mechanical Properties of A 5056 Al-Mg Alloy Processed by Equal-Channel-Angular-Extrusion,” Scr. Mater., 36 (6) (1997), pp. 699–705.

    Article  CAS  Google Scholar 

  24. R.Z. Valiev et al., “Deformation Behavior of Ultra-Fine-Grained Copper,” Acta Metall. Mater., 42 (1994), p. 2467.

    Article  CAS  Google Scholar 

  25. N. Tsuji et al., “Ultrafine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process,” Scr. Mater., 40 (7) (1999), pp. 795–800.

    Article  CAS  Google Scholar 

  26. Y. Saito et al., “Ultrafine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process,” Scr. Mater., 39 (9) (1998), pp. 1221–1227.

    Article  CAS  Google Scholar 

  27. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman, “The Strength of Nanocrystalline Metals with and without Flaws,” Mater. Sci. Eng., A234–236 (1997), pp. 77–82.

    Google Scholar 

  28. P.G. Sanders, J.A. Eastman, and J.R. Weertman, “Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium,” Acta Mater., 45 (10) (1997), pp. 4019–4025.

    Article  CAS  Google Scholar 

  29. T.D. Shen et al., “On the Elastic Moduli of Nanocrystalline Fe, Cu, Ni, and Cu-Ni Alloys Prepared by Mechanical Milling/Alloying,” J. Mater. Res., 10 (11) (1995), pp. 2892–2896.

    CAS  Google Scholar 

  30. H. Chang et al., “Synthesis, Processing and Properties of Nanophase TiAl,” Scr. Metall. Mater., 25 (1991), pp. 1161–1166.

    Article  CAS  Google Scholar 

  31. G.W. Nieman, J.R. Weertman, and R.W. Siegel, “Tensile Strength and Creep Properties of Nanocrystalline Palladium,” Scr. Metall. Mater., 24 (1990), p. 145.

    Article  CAS  Google Scholar 

  32. E.Y. Gutmanas, L.I. Trusov, and I. Gotman, “Consolidation, Microstructure and Mechanical Properties of Nanocrystalline Metal Powders,” Nanostruct. Mater., 4 (8) (1994), pp. 893–901.

    Article  CAS  Google Scholar 

  33. M. Jain and T. Christman, “Synthesis, Processing and Deformation of Bulk Nanophase Fe-28Al-2Cr Intermetallic,” Acta Metall. Mater., 42 (1994), p. 1901.

    Article  CAS  Google Scholar 

  34. T.R. Smith and K.S. Vecchio, “Synthesis and Mechanical Properties of Nanoscale Mechanically-Milled NiAl,” Nanostruct. Mater., 5 (1) (1995), pp. 11–23.

    Article  CAS  Google Scholar 

  35. L.E. McCandlish, B.H. Kear, and B.K. Kim, “Processing and Properties of Nanostructured WC-Co,” Nanostruct. Mater., 1 (1992), pp. 119–124.

    Article  CAS  Google Scholar 

  36. L.E. McCandlish, B.H. Kear, and B.K. Kim, “Chemical Processing of Nanophase WC-Co Composite Powders,” Mater. Sci. Tech., 6 (1990), pp. 953–957.

    CAS  Google Scholar 

  37. A.E. Berkowitz and J.L. Walter, “Spark Erosion: A Method for Producing Rapidly Quenched Fine Powder,” J. Mater Res., 2 (2) (1987), pp. 277–288.

    CAS  Google Scholar 

  38. C.R. Aita, C.M. Scanlan, and M. Gajdardziska-Josifovska, “Sputter Deposited Zirconia-Alumina Nanolaminate Coatings,” JOM, 46 (10) (1994), pp. 40–42.

    CAS  Google Scholar 

  39. Y. Champion and J. Bigot, “Characterization of Nanocrystalline Copper Powders Prepared by Melting in a Cryogenic Liquid,” Mater. Sci. Eng., A217–218 (1996), pp. 58–63.

    Google Scholar 

  40. W. Chang et al., “Chemical Vapor Condensation of Nanostructured Ceramic Powders” Nanostruct. Mater., 4 (3) (1994), pp. 345–351.

    Article  CAS  Google Scholar 

  41. F.A. Lowenheim, Electroplating (New York: McGraw-Hill Book Co., 1978).

    Google Scholar 

  42. U. Erb and A.M. El-Sherik, U.S. patent 5,352,266 (1994).

    Google Scholar 

  43. D.L. Grimmett, M. Schwartz, and K. Nobe, “Pulsed Electrodeposition of Iron-Nickel Alloys,” J. Electrochem. Soc., 137 (11) (1990), pp. 3414–3418.

    Article  CAS  Google Scholar 

  44. D.L. Grimmett, M. Schwartz, and K. Nobe, “A Comparison of DC and Pulsed Fe-Ni Alloy Deposits,” J. Electrochem. Soc., 140 (4) (1993), pp. 973–978.

    Article  CAS  Google Scholar 

  45. A. Robertson, U. Erb, and G. Palumbo, “Practical Applications for Electrodeposited Nanocrystalline Materials,” Nanostruct. Mater., 12 (1–4) (1999), pp. 1035–1040.

    Article  Google Scholar 

  46. F.E. Luborsky, ed., Amorphous Metallic Alloys (London: Butterworth, 1983).

    Google Scholar 

  47. X.D. Liu, J.T. Wang, and B.Z. Ding, “Preparation and Properties of Nanocrystalline (Fe0·99Mo0·01)78Si9B13 Alloys,” Scr. Metall. Mater., 28 (1993), pp. 59–64.

    Article  CAS  Google Scholar 

  48. M.M. Nicolaus, H.-R. Sinning, and F. Haessner, “Crystallization Behavior and Generation of a Nanocrystalline State from Amorphous Co33Zr67,” Mater. Sci. Eng., A150 (1992), pp. 101–112.

    CAS  Google Scholar 

  49. C. Beeli et al., “Crystallization in Amorphous NiZr2 Studied by HRTEM,” Mater. Sci. Eng., A133 (1991), pp. 346–352.

    CAS  Google Scholar 

  50. K. Lu, J.T. Wang, and W.D. Wei, “A New Method for Synthesizing Nanocrystalline Alloys,” J. Appl. Phys., 69 (1) (1991), pp. 522–524.

    Article  CAS  Google Scholar 

  51. J. Eckert et al., “Nanostructured Materials in Multicomponent Alloy Systems,” Mater. Sci. Eng. (in press).

  52. R.W. Siegel, “Nanophase Materials Assembled from Atomic Clusters,” MRS Bull., 5 (10) (1990), pp. 60–67.

    Google Scholar 

  53. R.W. Siegel and J.A. Eastman, “Synthesis, Characterization and Properties of Nanophase Ceramics,” Mat. Res. Soc. Symp. Proc., 132 (1989), pp. 3–14.

    Google Scholar 

  54. H. Chang, C.J. Altstetter, and R.S. Averback, “Characteristics of Nanophase TiAl Produced by Inert Gas Condensation,” J. Mater. Res., 7 (11) (1992), pp. 2962–2970.

    CAS  Google Scholar 

  55. G.B. Schaffer and P.G. McCormick, “Displacement Reactions during Mechanical Alloying,” Metall. Trans., 21A (1990), pp. 2789–2794.

    CAS  Google Scholar 

  56. R.M. Davis, B. McDermott, and C.C. Koch, “Mechanical Alloying of Brittle Materials,” Metall. Trans., 19A (1988), pp. 2867–2874.

    CAS  Google Scholar 

  57. C.C. Koch, “The Synthesis and Structure of Nanocrystalline Materials Produced by Mechanical Attrition: A Review,” Nanostruct. Mater., 2 (1993), pp. 109–129.

    Article  CAS  Google Scholar 

  58. H.J. Fecht et al., “Nanocrystalline Metals Prepared by High-Energy Ball Milling,” Metall. Trans., 21A (1990), pp. 2333–2337.

    CAS  Google Scholar 

  59. C.C. Koch, “Processing of Nanophase Materials by High Energy Ball Milling,” Nanophases and Nanocrystalline Structures, ed. R.D. Shull and J.M. Sanchez (Warrendale, PA: TMS, 1994), pp. 19–31.

    Google Scholar 

  60. G.B. Schaffer and P.G. McCormick, “Anomalous Combustion Effects during Mechanical Alloying,” Metall. Trans., 22A (1991), pp. 3019–3024.

    CAS  Google Scholar 

  61. G.B. Schaffer and P.G. McCormick, “On the Kinetics of Mechanical Alloying,” Metall. Trans., 23A (1992), pp. 1285–1290.

    CAS  Google Scholar 

  62. Z.-G. Yang and L. Shaw, “Synthesis of Nanocrystalline SiC at Ambient Temperature through High Energy Reaction Milling,” Nanostruct. Mater., 7 (8) (1996), pp. 873–886.

    Article  CAS  Google Scholar 

  63. R.-M. Ren, Z.-G. Yang, and L. Shaw, “Synthesis of Nanostructured TiC via Carbothermic Reduction Enhanced by Mechanical Activation,” Scripta Mater., 38 (5) (1998), pp. 735–741.

    Article  CAS  Google Scholar 

  64. R. Ren, Z. Yang, and L. Shaw, “A Novel Process for Synthesizing Nanostructured Carbides: Mechanically Activated Synthesis,” Ceram. Eng. Sci. Proc., 19 (4) (1998), pp. 461–468.

    Article  CAS  Google Scholar 

  65. L. Shaw, R.-M. Ren, and Z.-G. Yang, “Sinterable Carbides From Oxides Using High Energy Milling Control Method,” U.S. patent pending.

  66. A. Chatterjee and D. Chakravorty, “Electrical Conductivity of Sol-Gel Derived Metal Nanoparticles,” J. Mater. Sci., 27 (1992), pp. 4115–4119.

    Article  CAS  Google Scholar 

  67. D.P. Yamato, A.L. Landis, and T.S. Kuan, “Fabrication of Ferromagnetic Composite Materials via Sol-Gel Processing,” Mater. Res. Soc. Symp. Proc. 132 (Pittsburgh, PA: MRS, 1989), pp. 73–78.

    Google Scholar 

  68. K.E. Gonsalves et al., “Preparation and Characterization of Nanophase Iron and Ferrous Alloys,” Nanotechnology: Molecularly Designed Materials, ACS Symp. Series, Vol. 622, ed. G.-M. Chow and K.E. Gonsalves (Washington, D.C.: American Chemical Society, 1996), pp. 220–236.

    Google Scholar 

  69. G.-M. Chow, M.A. Markowitz, and A. Singh, “Synthesizing Submicrometer and Nanoscale Particles via Self-Assembled Molecular Membranes,” JOM, 45 (1993), pp. 62–65.

    CAS  Google Scholar 

  70. M.P. Pileni, “Reverse Micelles as Microreactors,” J. Phys. Chem., 97 (1993), pp. 6961–6973.

    Article  CAS  Google Scholar 

  71. T. Hirai, H. Sato, and I. Komasawa, “Mechanism of Formation of CdS and ZnS Ultrafine Particles in Reverse Micelles,” Ind. Eng. Chem. Res., 33 (1994), pp. 3262–3266.

    Article  CAS  Google Scholar 

  72. I. Lisiecki and M.P. Pileni, “Synthesis of Copper Metallic Clusters Using Reverse Micelles as Microreactors,” J. Am. Chem. Soc., 115 (1993), pp. 3887–3896.

    Article  CAS  Google Scholar 

  73. I. Lisiecki, F. Billoudet, and M.P. Pileni, “Control of the Shape and the Size of Copper Metallic Particles,” J. Phys. Chem., 100 (1996), pp. 4160–4166.

    Article  CAS  Google Scholar 

  74. S.E. Friberg and Z. Ma, “Hydrolysis of Tetraethoxysilane in a Liquid Crystal, in a Microemulsion and in a Solution,” J. Non-Crystal. Solids, 147&148 (1992), pp. 30–35.

    Article  Google Scholar 

  75. J.H. Fendler, “Atomic and Molecular Clusters in Membrane Mimetic Chemistry,” Chem. Rev., 87 (1987), pp. 877–899.

    Article  CAS  Google Scholar 

  76. T. Ungar et al., “Particle-Size, Size Distribution and Dislocations in Nanocrystalline Tungsten-Carbide,” Nanostruct. Mater., 11 (1) (1999), pp. 103–113.

    Article  CAS  Google Scholar 

  77. J. Hojo et al., “Multiphase Composites of Silicon Carbide Obtained from Composite Particles,” Key Engineering Materials, 161–163 (1999), pp. 465–468.

    Article  Google Scholar 

  78. D.G. Morris, “Bonding Processes during the Dynamic Compaction of Metallic Powders,” Mater. Sci. Eng., 57 (1983), p. 187.

    Article  CAS  Google Scholar 

  79. C.F. Cline and R.W. Hopper, “Explosive Fabrication of Rapidly Quenched Materials,” Scr. Metall., 11 (1977), p. 1137.

    Article  CAS  Google Scholar 

  80. S.H. Risbud and C.-H. Shan, “Fast Consolidation of Ceramic Powders,” Mater. Sci. Eng., A204 (1995), pp. 146–151.

    CAS  Google Scholar 

  81. S.H. Yoo et al., “Consolidation and High Strain Rate Mechanical Behavior of Nanocrystalline Tantalum Powder,” Nanostruct. Mater., 12 (1–4) (1999), pp. 23–28.

    Article  Google Scholar 

  82. B. Chelluri and J.P. Barber, “Full-Density, Net-Shape Powder Consolidation using Dynamic Magnetic Pulse Pressures,” JOM, 51 (7) (1999), pp. 36–37.

    CAS  Google Scholar 

  83. S.C. Liao, W.E. Mayo, and K.D. Pae, “Theory of High Pressure/Low Temperature Sintering of Bulk Nanocrystalline TiO2,” Acta Mater., 45 (10) (1997), pp. 4027–4040.

    Article  CAS  Google Scholar 

  84. E.Y. Gutmanas and A. Rabinkin, “Cold Sintering under High Pressure,” Scripta Metall., 13 (1979), pp. 11–15.

    Article  CAS  Google Scholar 

  85. C. Herring, “Effect of Change of Scale on Sintering Phenomena,” J. Appl. Phys., 21 (1950), pp. 301–303.

    Article  CAS  Google Scholar 

  86. A. Pechenik, G.J. Piermarini, and S.C. Danforth, “Fabrication of Transparent Silicon Nitride from Nanosize Particles,” J. Am. Ceram. Soc., 75 (12) (1992), pp. 3283–3288.

    Article  CAS  Google Scholar 

  87. H.J. Hofler and R.S. Averback, “Grain Growth in Nanocrystalline TiO2 and Its Relation to Vickers Hardness and Fracture Toughness,” Scripta Metall. Mater., 24 (1990), pp. 2401–2406.

    Article  Google Scholar 

  88. F.H. Froes et al., “Nanostructure Processing for Titanium-Based Materials,” JOM, 44 (5) (1992), pp. 26–29.

    CAS  Google Scholar 

  89. F.F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 (2) (1984), pp. 83–89.

    Article  CAS  Google Scholar 

  90. H. Kamiya et al., “Densification of Alkoxide-Derived Fine Silica Powder Compact by Ultra-High-Pressure Cold Isostatic Pressing,” J. Am. Ceram. Soc., 76 (1) (1993), pp. 54–64.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Leon L. Shaw, University of Connecticut, Department of Metallurgy and Materials Engineering, Storrs, CT 06269; (860) 486-2592; fax (860) 486-4745; e-mail Ishaw@mail.ims.uconn.edu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, L.L. Processing nanostructured materials: An overview. JOM 52, 41–45 (2000). https://doi.org/10.1007/s11837-000-0068-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-000-0068-2

Keywords

Navigation